Last updated: 2025-06-04
Checks: 6 1
Knit directory: multigroup_ctwas_analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown is untracked by Git. To know which version of the R
Markdown file created these results, you’ll want to first commit it to
the Git repo. If you’re still working on the analysis, you can ignore
this warning. When you’re finished, you can run
wflow_publish
to commit the R Markdown file and build the
HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20231112)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 4f9814a. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .Rhistory
Ignored: cv/
Ignored: figures/lz/ADHD-ieu-a-1183/
Ignored: figures/lz/ASD-ieu-a-1185/
Ignored: figures/lz/IBD-ebi-a-GCST004131/single/
Ignored: figures/lz/MDD-ieu-b-102/single/
Ignored: figures/lz/PD-ieu-b-7/single/
Ignored: figures/lz/RA-panukb/single/
Untracked files:
Untracked: analysis/realdata_final_combine_qtls_3qtls.Rmd
Untracked: analysis/realdata_final_multigroup_validation_silver_3qtls.Rmd
Untracked: analysis/realdata_final_multigroup_validation_weighted_pwy_3qtls.Rmd
Unstaged changes:
Modified: analysis/index.Rmd
Deleted: analysis/realdata_final_genefunctions_3qtls.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
There are no past versions. Publish this analysis with
wflow_publish()
to start tracking its development.
library(kableExtra)
library(tidyverse)
-- Attaching packages --------------------------------------- tidyverse 1.3.1 --
v ggplot2 3.5.1 v purrr 1.0.2
v tibble 3.2.1 v dplyr 1.1.4
v tidyr 1.3.0 v stringr 1.5.1
v readr 2.1.2 v forcats 0.5.1
-- Conflicts ------------------------------------------ tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::group_rows() masks kableExtra::group_rows()
x dplyr::lag() masks stats::lag()
We validate genes with susie pip > 0.8 here: https://sq-96.github.io/multigroup_ctwas_analysis/realdata_final_multigroup_summary.html
The basic idea is:
Some biological pathways are related to the traits. Genes within these pathways are more likely to be associated with these traits. Our approach involves aggregating these genes into a collective group. This allows us to assess whether the genes identified by cTWAS are overrepresented in this group.
However, the presence of common genes across multiple pathways presents a challenge to this straightforward aggregation approach. To address this, we propose weighting the pathways, assigning a unique score to each gene. By selecting genes that meet a specific score threshold, we can form a more refined group. We can then evaluate the enrichment of cTWAS-identified genes within this selectively grouped set.
The model is \(y=X*w\)
y is an n-dimensional vector representing gene-trait associations (n = number of genes), which can be:
We tried different settings for the binary vector:
X is an n×m matrix (m = number of pathways) indicating gene membership in specific pathways.
We fitted this model using different models.
If y is a z-score vector, it can be fitted using
- XGBoost: regression with squared loss
If y is a binarized vector, the model can be fitted using
- XGBoost: logistic regression for binary classification, output probability
The model fitting results in pathway weights, from which we predict gene labels \(\hat{y}\). We then categorize genes based on these new labels.
For z-score model, we compute the p-values from the new labels(z-scores), then compute FDR. Then we tested different cutoffs for gene selection. The cutoffs are: 0.05,0.1,0.2
For binarized model. Genes with labels > 0.5/0.6/0.7/0.8 are considered benchmarks.
Genes from ctwas results are divided into different groups based on their SuSiE PIPs:
We assess whether high-PIP genes are more enriched in our benchmarks than other groups using Fisher exact tests.
The testing matrix is:
fisher_matrix <- matrix(c("n1","n2","n3","n4"),nrow = 2,ncol = 2)
rownames(fisher_matrix) <- c("#included","#notincluded")
colnames(fisher_matrix) <- c("pip08","other group")
print(fisher_matrix)
pip08 other group
#included "n1" "n3"
#notincluded "n2" "n4"
The pathways are from Go Biological Process (gobp), Go Molecular Function (gomf), Go Cellular Component (gocc) and KEGG.
df <- readRDS("/project/xinhe/xsun/multi_group_ctwas/25.multi_group_validation_classfier_0602/results/fisher_xgboost_binary/results_y_pred_xgboost_gene_score_bin_prob0.5_gobp.RDS")
df %>%
mutate(across(starts_with("pval_"),
~ifelse(. < 0.05,
cell_spec(sprintf("%.5f", .), color = "red"),
sprintf("%.5f", .)))) %>%
kable(escape = FALSE, format = "html",
caption = "Benchmark gene cutoff (XGboost prediction): 0.5, sigificant ones are highlighted") %>%
kable_styling(full_width = FALSE)
trait | num_benchmark_genes | num_gene_08p | num_gene_08m | num_gene_05m | num_gene_0508 | pval_08p08m | pval_08p05m | pval_08p0508 |
---|---|---|---|---|---|---|---|---|
LDL-ukb-d-30780_irnt | 64 | 73 | 5394 | 5321 | 73 | 0.00059 | 0.00039 | 1.00000 |
IBD-ebi-a-GCST004131 | 115 | 28 | 3749 | 3699 | 50 | 0.00205 | 0.00175 | 0.44778 |
aFib-ebi-a-GCST006414 | 36 | 53 | 3540 | 3489 | 51 | 0.00030 | 0.00022 | 0.67849 |
SBP-ukb-a-360 | 126 | 35 | 4909 | 4858 | 51 | 1.00000 | 1.00000 | 1.00000 |
T1D-GCST90014023 | 70 | 17 | 2855 | 2822 | 31 | 0.23603 | 0.22910 | 1.00000 |
Height-panukb | 15148 | 208 | 13763 | 13584 | 179 | 0.00740 | 0.00737 | 0.87110 |
HTN-panukb | 108 | 42 | 5465 | 5400 | 65 | 0.03689 | 0.03266 | 1.00000 |
PLT-panukb | 15219 | 119 | 10616 | 10471 | 145 | 0.33397 | 0.33579 | 0.04387 |
RA-panukb | 27 | 5 | 332 | 330 | 2 | 1.00000 | 1.00000 | 1.00000 |
RBC-panukb | 10362 | 122 | 10154 | 9976 | 178 | 0.00056 | 0.00055 | 0.69153 |
ATH_gtexukb | 70 | 21 | 3276 | 3227 | 49 | 0.03517 | 0.03336 | 0.57803 |
BMI-panukb | 13394 | 53 | 9215 | 9114 | 101 | 0.75242 | 0.75246 | 0.39287 |
HB-panukb | 1112 | 90 | 8649 | 8522 | 127 | 0.02761 | 0.02634 | 0.84386 |
T2D-panukb | 17 | 14 | 2460 | 2423 | 37 | 0.06597 | 0.06695 | 0.27451 |
SCZ-ieu-b-5102 | 190 | 15 | 3547 | 3511 | 36 | 1.00000 | 1.00000 | 1.00000 |
BIP-ieu-b-5110 | 43 | 9 | 2660 | 2622 | 38 | 1.00000 | 1.00000 | 1.00000 |
ASD-ieu-a-1185 | 6 | 0 | 107 | 103 | 4 | 1.00000 | 1.00000 | 1.00000 |
ADHD-ieu-a-1183 | 2 | 0 | 256 | 249 | 7 | 1.00000 | 1.00000 | 1.00000 |
PD-ieu-b-7 | 10 | 4 | 726 | 717 | 9 | 0.00047 | 0.00048 | 0.07692 |
NS-ukb-a-230 | 48 | 7 | 1201 | 1189 | 12 | 1.00000 | 1.00000 | 1.00000 |
MDD-ieu-b-102 | 18 | 0 | 799 | 796 | 3 | 1.00000 | 1.00000 | 1.00000 |
WBC-ieu-b-30 | 13703 | 243 | 11369 | 11103 | 266 | 0.00016 | 0.00012 | 0.38708 |
df <- readRDS("/project/xinhe/xsun/multi_group_ctwas/25.multi_group_validation_classfier_0602/results/fisher_xgboost_binary/results_y_pred_xgboost_gene_score_bin_prob0.6_gobp.RDS")
df %>%
mutate(across(starts_with("pval_"),
~ifelse(. < 0.05,
cell_spec(sprintf("%.5f", .), color = "red"),
sprintf("%.5f", .)))) %>%
kable(escape = FALSE, format = "html",
caption = "Benchmark gene cutoff (XGboost prediction): 0.6, sigificant ones are highlighted") %>%
kable_styling(full_width = FALSE)
trait | num_benchmark_genes | num_gene_08p | num_gene_08m | num_gene_05m | num_gene_0508 | pval_08p08m | pval_08p05m | pval_08p0508 |
---|---|---|---|---|---|---|---|---|
LDL-ukb-d-30780_irnt | 24 | 73 | 5394 | 5321 | 73 | 0.23611 | 0.20704 | 0.61977 |
IBD-ebi-a-GCST004131 | 76 | 28 | 3749 | 3699 | 50 | 0.00055 | 0.00046 | 0.24286 |
aFib-ebi-a-GCST006414 | 20 | 53 | 3540 | 3489 | 51 | 0.00178 | 0.00186 | 0.24300 |
SBP-ukb-a-360 | 53 | 35 | 4909 | 4858 | 51 | 1.00000 | 1.00000 | 1.00000 |
T1D-GCST90014023 | 35 | 17 | 2855 | 2822 | 31 | 1.00000 | 1.00000 | 0.53280 |
Height-panukb | 15028 | 208 | 13763 | 13584 | 179 | 0.00583 | 0.00454 | 0.87110 |
HTN-panukb | 44 | 42 | 5465 | 5400 | 65 | 1.00000 | 1.00000 | 0.51860 |
PLT-panukb | 6897 | 119 | 10616 | 10471 | 145 | 0.00095 | 0.00070 | 0.08313 |
RA-panukb | 23 | 5 | 332 | 330 | 2 | 1.00000 | 1.00000 | 1.00000 |
RBC-panukb | 1491 | 122 | 10154 | 9976 | 178 | 0.00001 | 0.00000 | 0.32109 |
ATH_gtexukb | 36 | 21 | 3276 | 3227 | 49 | 0.15904 | 0.16125 | 0.30000 |
BMI-panukb | 1194 | 53 | 9215 | 9114 | 101 | 0.11045 | 0.10709 | 1.00000 |
HB-panukb | 233 | 90 | 8649 | 8522 | 127 | 0.08272 | 0.08319 | 0.23524 |
T2D-panukb | 7 | 14 | 2460 | 2423 | 37 | 1.00000 | 1.00000 | 1.00000 |
SCZ-ieu-b-5102 | 97 | 15 | 3547 | 3511 | 36 | 1.00000 | 1.00000 | 1.00000 |
BIP-ieu-b-5110 | 9 | 9 | 2660 | 2622 | 38 | 1.00000 | 1.00000 | 1.00000 |
ASD-ieu-a-1185 | 3 | 0 | 107 | 103 | 4 | 1.00000 | 1.00000 | 1.00000 |
ADHD-ieu-a-1183 | 2 | 0 | 256 | 249 | 7 | 1.00000 | 1.00000 | 1.00000 |
PD-ieu-b-7 | 6 | 4 | 726 | 717 | 9 | 0.02717 | 0.02751 | 0.30769 |
NS-ukb-a-230 | 21 | 7 | 1201 | 1189 | 12 | 1.00000 | 1.00000 | 1.00000 |
MDD-ieu-b-102 | 7 | 0 | 799 | 796 | 3 | 1.00000 | 1.00000 | 1.00000 |
WBC-ieu-b-30 | 1617 | 243 | 11369 | 11103 | 266 | 0.00000 | 0.00000 | 0.25095 |
df <- readRDS("/project/xinhe/xsun/multi_group_ctwas/25.multi_group_validation_classfier_0602/results/fisher_xgboost_binary/results_y_pred_xgboost_gene_score_bin_prob0.7_gobp.RDS")
df %>%
mutate(across(starts_with("pval_"),
~ifelse(. < 0.05,
cell_spec(sprintf("%.5f", .), color = "red"),
sprintf("%.5f", .)))) %>%
kable(escape = FALSE, format = "html",
caption = "Benchmark gene cutoff (XGboost prediction): 0.7, sigificant ones are highlighted") %>%
kable_styling(full_width = FALSE)
trait | num_benchmark_genes | num_gene_08p | num_gene_08m | num_gene_05m | num_gene_0508 | pval_08p08m | pval_08p05m | pval_08p0508 |
---|---|---|---|---|---|---|---|---|
LDL-ukb-d-30780_irnt | 10 | 73 | 5394 | 5321 | 73 | 0.10202 | 0.07854 | 1.00000 |
IBD-ebi-a-GCST004131 | 46 | 28 | 3749 | 3699 | 50 | 0.02292 | 0.01950 | 1.00000 |
aFib-ebi-a-GCST006414 | 7 | 53 | 3540 | 3489 | 51 | 0.00428 | 0.00440 | 0.49533 |
SBP-ukb-a-360 | 18 | 35 | 4909 | 4858 | 51 | 1.00000 | 1.00000 | 1.00000 |
T1D-GCST90014023 | 24 | 17 | 2855 | 2822 | 31 | 1.00000 | 1.00000 | 1.00000 |
Height-panukb | 14703 | 208 | 13763 | 13584 | 179 | 0.00431 | 0.00337 | 1.00000 |
HTN-panukb | 15 | 42 | 5465 | 5400 | 65 | 1.00000 | 1.00000 | 1.00000 |
PLT-panukb | 418 | 119 | 10616 | 10471 | 145 | 0.77556 | 0.77460 | 0.19290 |
RA-panukb | 18 | 5 | 332 | 330 | 2 | 1.00000 | 1.00000 | 1.00000 |
RBC-panukb | 283 | 122 | 10154 | 9976 | 178 | 0.00360 | 0.00326 | 0.41933 |
ATH_gtexukb | 27 | 21 | 3276 | 3227 | 49 | 0.13153 | 0.13339 | 0.30000 |
BMI-panukb | 39 | 53 | 9215 | 9114 | 101 | 0.16312 | 0.16477 | 0.34416 |
HB-panukb | 41 | 90 | 8649 | 8522 | 127 | 0.04260 | 0.04374 | 0.17089 |
T2D-panukb | 3 | 14 | 2460 | 2423 | 37 | 1.00000 | 1.00000 | 1.00000 |
SCZ-ieu-b-5102 | 51 | 15 | 3547 | 3511 | 36 | 1.00000 | 1.00000 | 1.00000 |
BIP-ieu-b-5110 | 0 | 9 | 2660 | 2622 | 38 | 1.00000 | 1.00000 | 1.00000 |
ASD-ieu-a-1185 | 0 | 0 | 107 | 103 | 4 | 1.00000 | 1.00000 | 1.00000 |
ADHD-ieu-a-1183 | 1 | 0 | 256 | 249 | 7 | 1.00000 | 1.00000 | 1.00000 |
PD-ieu-b-7 | 4 | 4 | 726 | 717 | 9 | 0.02178 | 0.02205 | 0.30769 |
NS-ukb-a-230 | 9 | 7 | 1201 | 1189 | 12 | 1.00000 | 1.00000 | 1.00000 |
MDD-ieu-b-102 | 1 | 0 | 799 | 796 | 3 | 1.00000 | 1.00000 | 1.00000 |
WBC-ieu-b-30 | 108 | 243 | 11369 | 11103 | 266 | 0.10926 | 0.09895 | 1.00000 |
df <- readRDS("/project/xinhe/xsun/multi_group_ctwas/25.multi_group_validation_classfier_0602/results/fisher_xgboost_binary/results_y_pred_xgboost_gene_score_bin_prob0.8_gobp.RDS")
df %>%
mutate(across(starts_with("pval_"),
~ifelse(. < 0.05,
cell_spec(sprintf("%.5f", .), color = "red"),
sprintf("%.5f", .)))) %>%
kable(escape = FALSE, format = "html",
caption = "Benchmark gene cutoff (XGboost prediction): 0.8, sigificant ones are highlighted") %>%
kable_styling(full_width = FALSE)
trait | num_benchmark_genes | num_gene_08p | num_gene_08m | num_gene_05m | num_gene_0508 | pval_08p08m | pval_08p05m | pval_08p0508 |
---|---|---|---|---|---|---|---|---|
LDL-ukb-d-30780_irnt | 3 | 73 | 5394 | 5321 | 73 | 1.00000 | 1.00000 | 1.00000 |
IBD-ebi-a-GCST004131 | 19 | 28 | 3749 | 3699 | 50 | 0.09909 | 0.09353 | 1.00000 |
aFib-ebi-a-GCST006414 | 3 | 53 | 3540 | 3489 | 51 | 0.04362 | 0.04423 | 1.00000 |
SBP-ukb-a-360 | 4 | 35 | 4909 | 4858 | 51 | 1.00000 | 1.00000 | 1.00000 |
T1D-GCST90014023 | 9 | 17 | 2855 | 2822 | 31 | 1.00000 | 1.00000 | 1.00000 |
Height-panukb | 7348 | 208 | 13763 | 13584 | 179 | 0.00228 | 0.00224 | 0.91891 |
HTN-panukb | 1 | 42 | 5465 | 5400 | 65 | 1.00000 | 1.00000 | 1.00000 |
PLT-panukb | 26 | 119 | 10616 | 10471 | 145 | 1.00000 | 1.00000 | 1.00000 |
RA-panukb | 14 | 5 | 332 | 330 | 2 | 1.00000 | 1.00000 | 1.00000 |
RBC-panukb | 36 | 122 | 10154 | 9976 | 178 | 0.30149 | 0.28880 | 1.00000 |
ATH_gtexukb | 5 | 21 | 3276 | 3227 | 49 | 1.00000 | 1.00000 | 1.00000 |
BMI-panukb | 0 | 53 | 9215 | 9114 | 101 | 1.00000 | 1.00000 | 1.00000 |
HB-panukb | 4 | 90 | 8649 | 8522 | 127 | 1.00000 | 1.00000 | 1.00000 |
T2D-panukb | 2 | 14 | 2460 | 2423 | 37 | 1.00000 | 1.00000 | 1.00000 |
SCZ-ieu-b-5102 | 4 | 15 | 3547 | 3511 | 36 | 1.00000 | 1.00000 | 1.00000 |
BIP-ieu-b-5110 | 0 | 9 | 2660 | 2622 | 38 | 1.00000 | 1.00000 | 1.00000 |
ASD-ieu-a-1185 | 0 | 0 | 107 | 103 | 4 | 1.00000 | 1.00000 | 1.00000 |
ADHD-ieu-a-1183 | 1 | 0 | 256 | 249 | 7 | 1.00000 | 1.00000 | 1.00000 |
PD-ieu-b-7 | 1 | 4 | 726 | 717 | 9 | 1.00000 | 1.00000 | 1.00000 |
NS-ukb-a-230 | 1 | 7 | 1201 | 1189 | 12 | 1.00000 | 1.00000 | 1.00000 |
MDD-ieu-b-102 | 0 | 0 | 799 | 796 | 3 | 1.00000 | 1.00000 | 1.00000 |
WBC-ieu-b-30 | 0 | 243 | 11369 | 11103 | 266 | 1.00000 | 1.00000 | 1.00000 |
df <- readRDS("/project/xinhe/xsun/multi_group_ctwas/25.multi_group_validation_classfier_0602/results/fisher_xgboost_binary/results_y_pred_xgboost_gene_score_bin_trunc500_prob0.5_gobp.RDS")
df %>%
mutate(across(starts_with("pval_"),
~ifelse(. < 0.05,
cell_spec(sprintf("%.5f", .), color = "red"),
sprintf("%.5f", .)))) %>%
kable(escape = FALSE, format = "html",
caption = "Benchmark gene cutoff (XGboost prediction): 0.5, sigificant ones are highlighted") %>%
kable_styling(full_width = FALSE)
trait | num_benchmark_genes | num_gene_08p | num_gene_08m | num_gene_05m | num_gene_0508 | pval_08p08m | pval_08p05m | pval_08p0508 |
---|---|---|---|---|---|---|---|---|
LDL-ukb-d-30780_irnt | 33 | 73 | 5394 | 5321 | 73 | 0.00000 | 0.00000 | 0.74505 |
IBD-ebi-a-GCST004131 | 41 | 28 | 3749 | 3699 | 50 | 0.00010 | 0.00010 | 0.01435 |
aFib-ebi-a-GCST006414 | 23 | 53 | 3540 | 3489 | 51 | 0.02521 | 0.02306 | 1.00000 |
SBP-ukb-a-360 | 7 | 35 | 4909 | 4858 | 51 | 1.00000 | 1.00000 | 1.00000 |
T1D-GCST90014023 | 48 | 17 | 2855 | 2822 | 31 | 1.00000 | 1.00000 | 0.53280 |
Height-panukb | 35 | 208 | 13763 | 13584 | 179 | 1.00000 | 1.00000 | 0.46253 |
HTN-panukb | 10 | 42 | 5465 | 5400 | 65 | 1.00000 | 1.00000 | 1.00000 |
PLT-panukb | 22 | 119 | 10616 | 10471 | 145 | 0.20000 | 0.19337 | 1.00000 |
RA-panukb | 25 | 5 | 332 | 330 | 2 | 1.00000 | 1.00000 | 1.00000 |
RBC-panukb | 25 | 122 | 10154 | 9976 | 178 | 0.25839 | 0.25328 | 1.00000 |
ATH_gtexukb | 54 | 21 | 3276 | 3227 | 49 | 0.00233 | 0.00212 | 0.15514 |
BMI-panukb | 11 | 53 | 9215 | 9114 | 101 | 0.05033 | 0.05087 | 0.34416 |
HB-panukb | 20 | 90 | 8649 | 8522 | 127 | 1.00000 | 1.00000 | 1.00000 |
T2D-panukb | 20 | 14 | 2460 | 2423 | 37 | 0.08182 | 0.07769 | 0.47765 |
SCZ-ieu-b-5102 | 25 | 15 | 3547 | 3511 | 36 | 1.00000 | 1.00000 | 1.00000 |
BIP-ieu-b-5110 | 19 | 9 | 2660 | 2622 | 38 | 1.00000 | 1.00000 | 1.00000 |
ASD-ieu-a-1185 | 6 | 0 | 107 | 103 | 4 | 1.00000 | 1.00000 | 1.00000 |
ADHD-ieu-a-1183 | 2 | 0 | 256 | 249 | 7 | 1.00000 | 1.00000 | 1.00000 |
PD-ieu-b-7 | 9 | 4 | 726 | 717 | 9 | 0.03254 | 0.03294 | 0.30769 |
NS-ukb-a-230 | 17 | 7 | 1201 | 1189 | 12 | 1.00000 | 1.00000 | 1.00000 |
MDD-ieu-b-102 | 26 | 0 | 799 | 796 | 3 | 1.00000 | 1.00000 | 1.00000 |
WBC-ieu-b-30 | 43 | 243 | 11369 | 11103 | 266 | 0.05391 | 0.05041 | 0.67332 |
df <- readRDS("/project/xinhe/xsun/multi_group_ctwas/25.multi_group_validation_classfier_0602/results/fisher_xgboost_binary/results_y_pred_xgboost_gene_score_bin_trunc500_prob0.6_gobp.RDS")
df %>%
mutate(across(starts_with("pval_"),
~ifelse(. < 0.05,
cell_spec(sprintf("%.5f", .), color = "red"),
sprintf("%.5f", .)))) %>%
kable(escape = FALSE, format = "html",
caption = "Benchmark gene cutoff (XGboost prediction): 0.6, sigificant ones are highlighted") %>%
kable_styling(full_width = FALSE)
trait | num_benchmark_genes | num_gene_08p | num_gene_08m | num_gene_05m | num_gene_0508 | pval_08p08m | pval_08p05m | pval_08p0508 |
---|---|---|---|---|---|---|---|---|
LDL-ukb-d-30780_irnt | 24 | 73 | 5394 | 5321 | 73 | 0.00021 | 0.00010 | 1.00000 |
IBD-ebi-a-GCST004131 | 31 | 28 | 3749 | 3699 | 50 | 0.00075 | 0.00078 | 0.04306 |
aFib-ebi-a-GCST006414 | 11 | 53 | 3540 | 3489 | 51 | 0.09888 | 0.10024 | 1.00000 |
SBP-ukb-a-360 | 3 | 35 | 4909 | 4858 | 51 | 1.00000 | 1.00000 | 1.00000 |
T1D-GCST90014023 | 36 | 17 | 2855 | 2822 | 31 | 1.00000 | 1.00000 | 1.00000 |
Height-panukb | 22 | 208 | 13763 | 13584 | 179 | 1.00000 | 1.00000 | 1.00000 |
HTN-panukb | 7 | 42 | 5465 | 5400 | 65 | 1.00000 | 1.00000 | 1.00000 |
PLT-panukb | 14 | 119 | 10616 | 10471 | 145 | 1.00000 | 1.00000 | 1.00000 |
RA-panukb | 23 | 5 | 332 | 330 | 2 | 1.00000 | 1.00000 | 1.00000 |
RBC-panukb | 19 | 122 | 10154 | 9976 | 178 | 0.20318 | 0.20638 | 0.40667 |
ATH_gtexukb | 39 | 21 | 3276 | 3227 | 49 | 0.18571 | 0.18292 | 0.51304 |
BMI-panukb | 6 | 53 | 9215 | 9114 | 101 | 1.00000 | 1.00000 | 1.00000 |
HB-panukb | 14 | 90 | 8649 | 8522 | 127 | 1.00000 | 1.00000 | 1.00000 |
T2D-panukb | 15 | 14 | 2460 | 2423 | 37 | 0.07129 | 0.06695 | 0.47765 |
SCZ-ieu-b-5102 | 22 | 15 | 3547 | 3511 | 36 | 1.00000 | 1.00000 | 1.00000 |
BIP-ieu-b-5110 | 3 | 9 | 2660 | 2622 | 38 | 1.00000 | 1.00000 | 1.00000 |
ASD-ieu-a-1185 | 6 | 0 | 107 | 103 | 4 | 1.00000 | 1.00000 | 1.00000 |
ADHD-ieu-a-1183 | 2 | 0 | 256 | 249 | 7 | 1.00000 | 1.00000 | 1.00000 |
PD-ieu-b-7 | 5 | 4 | 726 | 717 | 9 | 0.02717 | 0.02751 | 0.30769 |
NS-ukb-a-230 | 11 | 7 | 1201 | 1189 | 12 | 1.00000 | 1.00000 | 1.00000 |
MDD-ieu-b-102 | 14 | 0 | 799 | 796 | 3 | 1.00000 | 1.00000 | 1.00000 |
WBC-ieu-b-30 | 27 | 243 | 11369 | 11103 | 266 | 0.43541 | 0.43080 | 1.00000 |
df <- readRDS("/project/xinhe/xsun/multi_group_ctwas/25.multi_group_validation_classfier_0602/results/fisher_xgboost_binary/results_y_pred_xgboost_gene_score_bin_trunc500_prob0.7_gobp.RDS")
df %>%
mutate(across(starts_with("pval_"),
~ifelse(. < 0.05,
cell_spec(sprintf("%.5f", .), color = "red"),
sprintf("%.5f", .)))) %>%
kable(escape = FALSE, format = "html",
caption = "Benchmark gene cutoff (XGboost prediction): 0.7, sigificant ones are highlighted") %>%
kable_styling(full_width = FALSE)
trait | num_benchmark_genes | num_gene_08p | num_gene_08m | num_gene_05m | num_gene_0508 | pval_08p08m | pval_08p05m | pval_08p0508 |
---|---|---|---|---|---|---|---|---|
LDL-ukb-d-30780_irnt | 11 | 73 | 5394 | 5321 | 73 | 0.00026 | 0.00013 | 1.00000 |
IBD-ebi-a-GCST004131 | 17 | 28 | 3749 | 3699 | 50 | 0.09909 | 0.10036 | 0.35897 |
aFib-ebi-a-GCST006414 | 6 | 53 | 3540 | 3489 | 51 | 0.05773 | 0.05855 | 1.00000 |
SBP-ukb-a-360 | 0 | 35 | 4909 | 4858 | 51 | 1.00000 | 1.00000 | 1.00000 |
T1D-GCST90014023 | 28 | 17 | 2855 | 2822 | 31 | 1.00000 | 1.00000 | 1.00000 |
Height-panukb | 12 | 208 | 13763 | 13584 | 179 | 1.00000 | 1.00000 | 1.00000 |
HTN-panukb | 2 | 42 | 5465 | 5400 | 65 | 1.00000 | 1.00000 | 1.00000 |
PLT-panukb | 8 | 119 | 10616 | 10471 | 145 | 1.00000 | 1.00000 | 1.00000 |
RA-panukb | 18 | 5 | 332 | 330 | 2 | 1.00000 | 1.00000 | 1.00000 |
RBC-panukb | 14 | 122 | 10154 | 9976 | 178 | 1.00000 | 1.00000 | 1.00000 |
ATH_gtexukb | 29 | 21 | 3276 | 3227 | 49 | 0.14814 | 0.15021 | 0.30000 |
BMI-panukb | 2 | 53 | 9215 | 9114 | 101 | 1.00000 | 1.00000 | 1.00000 |
HB-panukb | 11 | 90 | 8649 | 8522 | 127 | 1.00000 | 1.00000 | 1.00000 |
T2D-panukb | 8 | 14 | 2460 | 2423 | 37 | 0.04445 | 0.03957 | 0.47765 |
SCZ-ieu-b-5102 | 8 | 15 | 3547 | 3511 | 36 | 1.00000 | 1.00000 | 1.00000 |
BIP-ieu-b-5110 | 1 | 9 | 2660 | 2622 | 38 | 1.00000 | 1.00000 | 1.00000 |
ASD-ieu-a-1185 | 1 | 0 | 107 | 103 | 4 | 1.00000 | 1.00000 | 1.00000 |
ADHD-ieu-a-1183 | 1 | 0 | 256 | 249 | 7 | 1.00000 | 1.00000 | 1.00000 |
PD-ieu-b-7 | 3 | 4 | 726 | 717 | 9 | 0.01637 | 0.01657 | 0.30769 |
NS-ukb-a-230 | 5 | 7 | 1201 | 1189 | 12 | 1.00000 | 1.00000 | 1.00000 |
MDD-ieu-b-102 | 6 | 0 | 799 | 796 | 3 | 1.00000 | 1.00000 | 1.00000 |
WBC-ieu-b-30 | 15 | 243 | 11369 | 11103 | 266 | 1.00000 | 1.00000 | 1.00000 |
df <- readRDS("/project/xinhe/xsun/multi_group_ctwas/25.multi_group_validation_classfier_0602/results/fisher_xgboost_binary/results_y_pred_xgboost_gene_score_bin_trunc500_prob0.8_gobp.RDS")
df %>%
mutate(across(starts_with("pval_"),
~ifelse(. < 0.05,
cell_spec(sprintf("%.5f", .), color = "red"),
sprintf("%.5f", .)))) %>%
kable(escape = FALSE, format = "html",
caption = "Benchmark gene cutoff (XGboost prediction): 0.8, sigificant ones are highlighted") %>%
kable_styling(full_width = FALSE)
trait | num_benchmark_genes | num_gene_08p | num_gene_08m | num_gene_05m | num_gene_0508 | pval_08p08m | pval_08p05m | pval_08p0508 |
---|---|---|---|---|---|---|---|---|
LDL-ukb-d-30780_irnt | 9 | 73 | 5394 | 5321 | 73 | 0.00012 | 0.00008 | 0.61977 |
IBD-ebi-a-GCST004131 | 5 | 28 | 3749 | 3699 | 50 | 0.02934 | 0.02973 | 0.35897 |
aFib-ebi-a-GCST006414 | 1 | 53 | 3540 | 3489 | 51 | 1.00000 | 1.00000 | 1.00000 |
SBP-ukb-a-360 | 0 | 35 | 4909 | 4858 | 51 | 1.00000 | 1.00000 | 1.00000 |
T1D-GCST90014023 | 11 | 17 | 2855 | 2822 | 31 | 1.00000 | 1.00000 | 1.00000 |
Height-panukb | 5 | 208 | 13763 | 13584 | 179 | 1.00000 | 1.00000 | 1.00000 |
HTN-panukb | 0 | 42 | 5465 | 5400 | 65 | 1.00000 | 1.00000 | 1.00000 |
PLT-panukb | 1 | 119 | 10616 | 10471 | 145 | 1.00000 | 1.00000 | 1.00000 |
RA-panukb | 14 | 5 | 332 | 330 | 2 | 1.00000 | 1.00000 | 1.00000 |
RBC-panukb | 7 | 122 | 10154 | 9976 | 178 | 1.00000 | 1.00000 | 1.00000 |
ATH_gtexukb | 13 | 21 | 3276 | 3227 | 49 | 1.00000 | 1.00000 | 1.00000 |
BMI-panukb | 0 | 53 | 9215 | 9114 | 101 | 1.00000 | 1.00000 | 1.00000 |
HB-panukb | 4 | 90 | 8649 | 8522 | 127 | 1.00000 | 1.00000 | 1.00000 |
T2D-panukb | 1 | 14 | 2460 | 2423 | 37 | 1.00000 | 1.00000 | 1.00000 |
SCZ-ieu-b-5102 | 7 | 15 | 3547 | 3511 | 36 | 1.00000 | 1.00000 | 1.00000 |
BIP-ieu-b-5110 | 0 | 9 | 2660 | 2622 | 38 | 1.00000 | 1.00000 | 1.00000 |
ASD-ieu-a-1185 | 0 | 0 | 107 | 103 | 4 | 1.00000 | 1.00000 | 1.00000 |
ADHD-ieu-a-1183 | 0 | 0 | 256 | 249 | 7 | 1.00000 | 1.00000 | 1.00000 |
PD-ieu-b-7 | 0 | 4 | 726 | 717 | 9 | 1.00000 | 1.00000 | 1.00000 |
NS-ukb-a-230 | 1 | 7 | 1201 | 1189 | 12 | 1.00000 | 1.00000 | 1.00000 |
MDD-ieu-b-102 | 3 | 0 | 799 | 796 | 3 | 1.00000 | 1.00000 | 1.00000 |
WBC-ieu-b-30 | 4 | 243 | 11369 | 11103 | 266 | 1.00000 | 1.00000 | 1.00000 |
df <- readRDS("/project/xinhe/xsun/multi_group_ctwas/25.multi_group_validation_classfier_0602/results/fisher_xgboost_binary/results_y_pred_xgboost_gene_score_bin_trunc1000_prob0.5_gobp.RDS")
df %>%
mutate(across(starts_with("pval_"),
~ifelse(. < 0.05,
cell_spec(sprintf("%.5f", .), color = "red"),
sprintf("%.5f", .)))) %>%
kable(escape = FALSE, format = "html",
caption = "Benchmark gene cutoff (XGboost prediction): 0.5, sigificant ones are highlighted") %>%
kable_styling(full_width = FALSE)
trait | num_benchmark_genes | num_gene_08p | num_gene_08m | num_gene_05m | num_gene_0508 | pval_08p08m | pval_08p05m | pval_08p0508 |
---|---|---|---|---|---|---|---|---|
LDL-ukb-d-30780_irnt | 47 | 73 | 5394 | 5321 | 73 | 0.00244 | 0.00178 | 1.00000 |
IBD-ebi-a-GCST004131 | 73 | 28 | 3749 | 3699 | 50 | 0.00073 | 0.00072 | 0.05315 |
aFib-ebi-a-GCST006414 | 23 | 53 | 3540 | 3489 | 51 | 0.00078 | 0.00063 | 0.61790 |
SBP-ukb-a-360 | 20 | 35 | 4909 | 4858 | 51 | 1.00000 | 1.00000 | 1.00000 |
T1D-GCST90014023 | 50 | 17 | 2855 | 2822 | 31 | 1.00000 | 1.00000 | 0.54296 |
Height-panukb | 47 | 208 | 13763 | 13584 | 179 | 0.13926 | 0.13700 | 1.00000 |
HTN-panukb | 16 | 42 | 5465 | 5400 | 65 | 1.00000 | 1.00000 | 1.00000 |
PLT-panukb | 37 | 119 | 10616 | 10471 | 145 | 0.05147 | 0.04711 | 1.00000 |
RA-panukb | 27 | 5 | 332 | 330 | 2 | 1.00000 | 1.00000 | 1.00000 |
RBC-panukb | 27 | 122 | 10154 | 9976 | 178 | 0.26722 | 0.27125 | 0.40667 |
ATH_gtexukb | 56 | 21 | 3276 | 3227 | 49 | 0.03245 | 0.03066 | 0.57803 |
BMI-panukb | 14 | 53 | 9215 | 9114 | 101 | 1.00000 | 1.00000 | 1.00000 |
HB-panukb | 41 | 90 | 8649 | 8522 | 127 | 0.23627 | 0.23126 | 1.00000 |
T2D-panukb | 9 | 14 | 2460 | 2423 | 37 | 1.00000 | 1.00000 | 1.00000 |
SCZ-ieu-b-5102 | 42 | 15 | 3547 | 3511 | 36 | 0.08504 | 0.08194 | 0.50588 |
BIP-ieu-b-5110 | 45 | 9 | 2660 | 2622 | 38 | 1.00000 | 1.00000 | 1.00000 |
ASD-ieu-a-1185 | 7 | 0 | 107 | 103 | 4 | 1.00000 | 1.00000 | 1.00000 |
ADHD-ieu-a-1183 | 3 | 0 | 256 | 249 | 7 | 1.00000 | 1.00000 | 1.00000 |
PD-ieu-b-7 | 9 | 4 | 726 | 717 | 9 | 0.03254 | 0.03294 | 0.30769 |
NS-ukb-a-230 | 40 | 7 | 1201 | 1189 | 12 | 1.00000 | 1.00000 | 1.00000 |
MDD-ieu-b-102 | 19 | 0 | 799 | 796 | 3 | 1.00000 | 1.00000 | 1.00000 |
WBC-ieu-b-30 | 52 | 243 | 11369 | 11103 | 266 | 0.00449 | 0.00350 | 0.74270 |
df <- readRDS("/project/xinhe/xsun/multi_group_ctwas/25.multi_group_validation_classfier_0602/results/fisher_xgboost_binary/results_y_pred_xgboost_gene_score_bin_trunc500_prob0.6_gobp.RDS")
df %>%
mutate(across(starts_with("pval_"),
~ifelse(. < 0.05,
cell_spec(sprintf("%.5f", .), color = "red"),
sprintf("%.5f", .)))) %>%
kable(escape = FALSE, format = "html",
caption = "Benchmark gene cutoff (XGboost prediction): 0.6, sigificant ones are highlighted") %>%
kable_styling(full_width = FALSE)
trait | num_benchmark_genes | num_gene_08p | num_gene_08m | num_gene_05m | num_gene_0508 | pval_08p08m | pval_08p05m | pval_08p0508 |
---|---|---|---|---|---|---|---|---|
LDL-ukb-d-30780_irnt | 24 | 73 | 5394 | 5321 | 73 | 0.00021 | 0.00010 | 1.00000 |
IBD-ebi-a-GCST004131 | 31 | 28 | 3749 | 3699 | 50 | 0.00075 | 0.00078 | 0.04306 |
aFib-ebi-a-GCST006414 | 11 | 53 | 3540 | 3489 | 51 | 0.09888 | 0.10024 | 1.00000 |
SBP-ukb-a-360 | 3 | 35 | 4909 | 4858 | 51 | 1.00000 | 1.00000 | 1.00000 |
T1D-GCST90014023 | 36 | 17 | 2855 | 2822 | 31 | 1.00000 | 1.00000 | 1.00000 |
Height-panukb | 22 | 208 | 13763 | 13584 | 179 | 1.00000 | 1.00000 | 1.00000 |
HTN-panukb | 7 | 42 | 5465 | 5400 | 65 | 1.00000 | 1.00000 | 1.00000 |
PLT-panukb | 14 | 119 | 10616 | 10471 | 145 | 1.00000 | 1.00000 | 1.00000 |
RA-panukb | 23 | 5 | 332 | 330 | 2 | 1.00000 | 1.00000 | 1.00000 |
RBC-panukb | 19 | 122 | 10154 | 9976 | 178 | 0.20318 | 0.20638 | 0.40667 |
ATH_gtexukb | 39 | 21 | 3276 | 3227 | 49 | 0.18571 | 0.18292 | 0.51304 |
BMI-panukb | 6 | 53 | 9215 | 9114 | 101 | 1.00000 | 1.00000 | 1.00000 |
HB-panukb | 14 | 90 | 8649 | 8522 | 127 | 1.00000 | 1.00000 | 1.00000 |
T2D-panukb | 15 | 14 | 2460 | 2423 | 37 | 0.07129 | 0.06695 | 0.47765 |
SCZ-ieu-b-5102 | 22 | 15 | 3547 | 3511 | 36 | 1.00000 | 1.00000 | 1.00000 |
BIP-ieu-b-5110 | 3 | 9 | 2660 | 2622 | 38 | 1.00000 | 1.00000 | 1.00000 |
ASD-ieu-a-1185 | 6 | 0 | 107 | 103 | 4 | 1.00000 | 1.00000 | 1.00000 |
ADHD-ieu-a-1183 | 2 | 0 | 256 | 249 | 7 | 1.00000 | 1.00000 | 1.00000 |
PD-ieu-b-7 | 5 | 4 | 726 | 717 | 9 | 0.02717 | 0.02751 | 0.30769 |
NS-ukb-a-230 | 11 | 7 | 1201 | 1189 | 12 | 1.00000 | 1.00000 | 1.00000 |
MDD-ieu-b-102 | 14 | 0 | 799 | 796 | 3 | 1.00000 | 1.00000 | 1.00000 |
WBC-ieu-b-30 | 27 | 243 | 11369 | 11103 | 266 | 0.43541 | 0.43080 | 1.00000 |
df <- readRDS("/project/xinhe/xsun/multi_group_ctwas/25.multi_group_validation_classfier_0602/results/fisher_xgboost_binary/results_y_pred_xgboost_gene_score_bin_trunc1000_prob0.7_gobp.RDS")
df %>%
mutate(across(starts_with("pval_"),
~ifelse(. < 0.05,
cell_spec(sprintf("%.5f", .), color = "red"),
sprintf("%.5f", .)))) %>%
kable(escape = FALSE, format = "html",
caption = "Benchmark gene cutoff (XGboost prediction): 0.7, sigificant ones are highlighted") %>%
kable_styling(full_width = FALSE)
trait | num_benchmark_genes | num_gene_08p | num_gene_08m | num_gene_05m | num_gene_0508 | pval_08p08m | pval_08p05m | pval_08p0508 |
---|---|---|---|---|---|---|---|---|
LDL-ukb-d-30780_irnt | 22 | 73 | 5394 | 5321 | 73 | 0.00221 | 0.00168 | 1.00000 |
IBD-ebi-a-GCST004131 | 25 | 28 | 3749 | 3699 | 50 | 0.01117 | 0.01146 | 0.12587 |
aFib-ebi-a-GCST006414 | 4 | 53 | 3540 | 3489 | 51 | 0.02929 | 0.02971 | 1.00000 |
SBP-ukb-a-360 | 5 | 35 | 4909 | 4858 | 51 | 1.00000 | 1.00000 | 1.00000 |
T1D-GCST90014023 | 22 | 17 | 2855 | 2822 | 31 | 1.00000 | 1.00000 | 1.00000 |
Height-panukb | 14 | 208 | 13763 | 13584 | 179 | 0.16479 | 0.15398 | 1.00000 |
HTN-panukb | 0 | 42 | 5465 | 5400 | 65 | 1.00000 | 1.00000 | 1.00000 |
PLT-panukb | 9 | 119 | 10616 | 10471 | 145 | 1.00000 | 1.00000 | 1.00000 |
RA-panukb | 20 | 5 | 332 | 330 | 2 | 1.00000 | 1.00000 | 1.00000 |
RBC-panukb | 11 | 122 | 10154 | 9976 | 178 | 0.12317 | 0.12521 | 0.40667 |
ATH_gtexukb | 27 | 21 | 3276 | 3227 | 49 | 0.13710 | 0.13903 | 0.30000 |
BMI-panukb | 4 | 53 | 9215 | 9114 | 101 | 1.00000 | 1.00000 | 1.00000 |
HB-panukb | 4 | 90 | 8649 | 8522 | 127 | 1.00000 | 1.00000 | 1.00000 |
T2D-panukb | 1 | 14 | 2460 | 2423 | 37 | 1.00000 | 1.00000 | 1.00000 |
SCZ-ieu-b-5102 | 7 | 15 | 3547 | 3511 | 36 | 1.00000 | 1.00000 | 1.00000 |
BIP-ieu-b-5110 | 0 | 9 | 2660 | 2622 | 38 | 1.00000 | 1.00000 | 1.00000 |
ASD-ieu-a-1185 | 1 | 0 | 107 | 103 | 4 | 1.00000 | 1.00000 | 1.00000 |
ADHD-ieu-a-1183 | 1 | 0 | 256 | 249 | 7 | 1.00000 | 1.00000 | 1.00000 |
PD-ieu-b-7 | 3 | 4 | 726 | 717 | 9 | 0.01637 | 0.01657 | 0.30769 |
NS-ukb-a-230 | 6 | 7 | 1201 | 1189 | 12 | 1.00000 | 1.00000 | 1.00000 |
MDD-ieu-b-102 | 1 | 0 | 799 | 796 | 3 | 1.00000 | 1.00000 | 1.00000 |
WBC-ieu-b-30 | 10 | 243 | 11369 | 11103 | 266 | 0.19069 | 0.17710 | 1.00000 |
df <- readRDS("/project/xinhe/xsun/multi_group_ctwas/25.multi_group_validation_classfier_0602/results/fisher_xgboost_binary/results_y_pred_xgboost_gene_score_bin_trunc1000_prob0.8_gobp.RDS")
df %>%
mutate(across(starts_with("pval_"),
~ifelse(. < 0.05,
cell_spec(sprintf("%.5f", .), color = "red"),
sprintf("%.5f", .)))) %>%
kable(escape = FALSE, format = "html",
caption = "Benchmark gene cutoff (XGboost prediction): 0.8, sigificant ones are highlighted") %>%
kable_styling(full_width = FALSE)
trait | num_benchmark_genes | num_gene_08p | num_gene_08m | num_gene_05m | num_gene_0508 | pval_08p08m | pval_08p05m | pval_08p0508 |
---|---|---|---|---|---|---|---|---|
LDL-ukb-d-30780_irnt | 8 | 73 | 5394 | 5321 | 73 | 0.08986 | 0.07854 | 1.00000 |
IBD-ebi-a-GCST004131 | 15 | 28 | 3749 | 3699 | 50 | 0.09234 | 0.09353 | 0.35897 |
aFib-ebi-a-GCST006414 | 1 | 53 | 3540 | 3489 | 51 | 0.01475 | 0.01496 | 1.00000 |
SBP-ukb-a-360 | 1 | 35 | 4909 | 4858 | 51 | 1.00000 | 1.00000 | 1.00000 |
T1D-GCST90014023 | 8 | 17 | 2855 | 2822 | 31 | 1.00000 | 1.00000 | 1.00000 |
Height-panukb | 5 | 208 | 13763 | 13584 | 179 | 0.07227 | 0.07318 | 1.00000 |
HTN-panukb | 0 | 42 | 5465 | 5400 | 65 | 1.00000 | 1.00000 | 1.00000 |
PLT-panukb | 3 | 119 | 10616 | 10471 | 145 | 1.00000 | 1.00000 | 1.00000 |
RA-panukb | 14 | 5 | 332 | 330 | 2 | 1.00000 | 1.00000 | 1.00000 |
RBC-panukb | 1 | 122 | 10154 | 9976 | 178 | 1.00000 | 1.00000 | 1.00000 |
ATH_gtexukb | 6 | 21 | 3276 | 3227 | 49 | 1.00000 | 1.00000 | 1.00000 |
BMI-panukb | 1 | 53 | 9215 | 9114 | 101 | 1.00000 | 1.00000 | 1.00000 |
HB-panukb | 0 | 90 | 8649 | 8522 | 127 | 1.00000 | 1.00000 | 1.00000 |
T2D-panukb | 0 | 14 | 2460 | 2423 | 37 | 1.00000 | 1.00000 | 1.00000 |
SCZ-ieu-b-5102 | 0 | 15 | 3547 | 3511 | 36 | 1.00000 | 1.00000 | 1.00000 |
BIP-ieu-b-5110 | 0 | 9 | 2660 | 2622 | 38 | 1.00000 | 1.00000 | 1.00000 |
ASD-ieu-a-1185 | 0 | 0 | 107 | 103 | 4 | 1.00000 | 1.00000 | 1.00000 |
ADHD-ieu-a-1183 | 0 | 0 | 256 | 249 | 7 | 1.00000 | 1.00000 | 1.00000 |
PD-ieu-b-7 | 0 | 4 | 726 | 717 | 9 | 1.00000 | 1.00000 | 1.00000 |
NS-ukb-a-230 | 1 | 7 | 1201 | 1189 | 12 | 1.00000 | 1.00000 | 1.00000 |
MDD-ieu-b-102 | 0 | 0 | 799 | 796 | 3 | 1.00000 | 1.00000 | 1.00000 |
WBC-ieu-b-30 | 3 | 243 | 11369 | 11103 | 266 | 0.06148 | 0.04238 | 1.00000 |
df <- readRDS("/project/xinhe/xsun/multi_group_ctwas/25.multi_group_validation_classfier_0602/results/fisher_xgboost_zscore/results_zfdr0.05_gobp.RDS")
df %>%
mutate(across(starts_with("pval_"),
~ifelse(. < 0.05,
cell_spec(sprintf("%.5f", .), color = "red"),
sprintf("%.5f", .)))) %>%
kable(escape = FALSE, format = "html",
caption = "Benchmark gene cutoff FDR 0.05, sigificant ones are highlighted") %>%
kable_styling(full_width = FALSE)
trait | num_benchmark_genes | num_gene_08p | num_gene_08m | num_gene_05m | num_gene_0508 | pval_08p08m | pval_08p05m | pval_08p0508 |
---|---|---|---|---|---|---|---|---|
LDL-ukb-d-30780_irnt | 75 | 73 | 5394 | 5321 | 73 | 0.00243 | 0.00199 | 1.00000 |
IBD-ebi-a-GCST004131 | 40 | 28 | 3749 | 3699 | 50 | 0.00000 | 0.00001 | 0.00466 |
aFib-ebi-a-GCST006414 | 7 | 53 | 3540 | 3489 | 51 | 0.00428 | 0.00317 | 1.00000 |
SBP-ukb-a-360 | 6 | 35 | 4909 | 4858 | 51 | 1.00000 | 1.00000 | 1.00000 |
T1D-GCST90014023 | 27 | 17 | 2855 | 2822 | 31 | 0.14873 | 0.15033 | 0.35417 |
Height-panukb | 15515 | 208 | 13763 | 13584 | 179 | 0.00933 | 0.00934 | 0.87110 |
HTN-panukb | 9 | 42 | 5465 | 5400 | 65 | 1.00000 | 1.00000 | 1.00000 |
PLT-panukb | 15484 | 119 | 10616 | 10471 | 145 | 0.45810 | 0.45922 | 0.11976 |
RA-panukb | 15 | 5 | 332 | 330 | 2 | 1.00000 | 1.00000 | 1.00000 |
RBC-panukb | 14551 | 122 | 10154 | 9976 | 178 | 0.08884 | 0.08885 | 0.86845 |
ATH_gtexukb | 37 | 21 | 3276 | 3227 | 49 | 0.02026 | 0.01972 | 0.21228 |
BMI-panukb | 14562 | 53 | 9215 | 9114 | 101 | 0.29857 | 0.29850 | 1.00000 |
HB-panukb | 169 | 90 | 8649 | 8522 | 127 | 0.38835 | 0.36547 | 0.20077 |
T2D-panukb | 4 | 14 | 2460 | 2423 | 37 | 1.00000 | 1.00000 | 1.00000 |
SCZ-ieu-b-5102 | 25 | 15 | 3547 | 3511 | 36 | 1.00000 | 1.00000 | 1.00000 |
BIP-ieu-b-5110 | 0 | 9 | 2660 | 2622 | 38 | 1.00000 | 1.00000 | 1.00000 |
ASD-ieu-a-1185 | 0 | 0 | 107 | 103 | 4 | 1.00000 | 1.00000 | 1.00000 |
ADHD-ieu-a-1183 | 0 | 0 | 256 | 249 | 7 | 1.00000 | 1.00000 | 1.00000 |
PD-ieu-b-7 | 2 | 4 | 726 | 717 | 9 | 0.01094 | 0.01107 | 0.30769 |
NS-ukb-a-230 | 2 | 7 | 1201 | 1189 | 12 | 1.00000 | 1.00000 | 1.00000 |
MDD-ieu-b-102 | 0 | 0 | 799 | 796 | 3 | 1.00000 | 1.00000 | 1.00000 |
WBC-ieu-b-30 | 14788 | 243 | 11369 | 11103 | 266 | 0.00247 | 0.00194 | 0.68161 |
df <- readRDS("/project/xinhe/xsun/multi_group_ctwas/25.multi_group_validation_classfier_0602/results/fisher_xgboost_zscore/results_zfdr0.1_gobp.RDS")
df %>%
mutate(across(starts_with("pval_"),
~ifelse(. < 0.05,
cell_spec(sprintf("%.5f", .), color = "red"),
sprintf("%.5f", .)))) %>%
kable(escape = FALSE, format = "html",
caption = "Benchmark gene cutoff FDR 0.1, sigificant ones are highlighted") %>%
kable_styling(full_width = FALSE)
trait | num_benchmark_genes | num_gene_08p | num_gene_08m | num_gene_05m | num_gene_0508 | pval_08p08m | pval_08p05m | pval_08p0508 |
---|---|---|---|---|---|---|---|---|
LDL-ukb-d-30780_irnt | 78 | 73 | 5394 | 5321 | 73 | 0.00042 | 0.00033 | 0.74505 |
IBD-ebi-a-GCST004131 | 45 | 28 | 3749 | 3699 | 50 | 0.00001 | 0.00001 | 0.00466 |
aFib-ebi-a-GCST006414 | 11 | 53 | 3540 | 3489 | 51 | 0.00000 | 0.00000 | 0.20550 |
SBP-ukb-a-360 | 7 | 35 | 4909 | 4858 | 51 | 1.00000 | 1.00000 | 1.00000 |
T1D-GCST90014023 | 27 | 17 | 2855 | 2822 | 31 | 0.14873 | 0.15033 | 0.35417 |
Height-panukb | 15679 | 208 | 13763 | 13584 | 179 | 0.01178 | 0.01185 | 0.87110 |
HTN-panukb | 16 | 42 | 5465 | 5400 | 65 | 0.10175 | 0.09591 | 1.00000 |
PLT-panukb | 15534 | 119 | 10616 | 10471 | 145 | 0.38775 | 0.45681 | 0.11976 |
RA-panukb | 17 | 5 | 332 | 330 | 2 | 1.00000 | 1.00000 | 1.00000 |
RBC-panukb | 15063 | 122 | 10154 | 9976 | 178 | 0.15725 | 0.15738 | 0.73770 |
ATH_gtexukb | 43 | 21 | 3276 | 3227 | 49 | 0.02251 | 0.02198 | 0.21228 |
BMI-panukb | 15131 | 53 | 9215 | 9114 | 101 | 0.47304 | 0.47293 | 1.00000 |
HB-panukb | 14479 | 90 | 8649 | 8522 | 127 | 0.00077 | 0.00078 | 0.08305 |
T2D-panukb | 4 | 14 | 2460 | 2423 | 37 | 1.00000 | 1.00000 | 1.00000 |
SCZ-ieu-b-5102 | 32 | 15 | 3547 | 3511 | 36 | 1.00000 | 1.00000 | 1.00000 |
BIP-ieu-b-5110 | 0 | 9 | 2660 | 2622 | 38 | 1.00000 | 1.00000 | 1.00000 |
ASD-ieu-a-1185 | 0 | 0 | 107 | 103 | 4 | 1.00000 | 1.00000 | 1.00000 |
ADHD-ieu-a-1183 | 0 | 0 | 256 | 249 | 7 | 1.00000 | 1.00000 | 1.00000 |
PD-ieu-b-7 | 3 | 4 | 726 | 717 | 9 | 0.01637 | 0.01657 | 0.30769 |
NS-ukb-a-230 | 2 | 7 | 1201 | 1189 | 12 | 1.00000 | 1.00000 | 1.00000 |
MDD-ieu-b-102 | 0 | 0 | 799 | 796 | 3 | 1.00000 | 1.00000 | 1.00000 |
WBC-ieu-b-30 | 15423 | 243 | 11369 | 11103 | 266 | 0.01223 | 0.00977 | 0.68161 |
df <- readRDS("/project/xinhe/xsun/multi_group_ctwas/25.multi_group_validation_classfier_0602/results/fisher_xgboost_zscore/results_zfdr0.2_gobp.RDS")
df %>%
mutate(across(starts_with("pval_"),
~ifelse(. < 0.05,
cell_spec(sprintf("%.5f", .), color = "red"),
sprintf("%.5f", .)))) %>%
kable(escape = FALSE, format = "html",
caption = "Benchmark gene cutoff FDR 0.2, sigificant ones are highlighted") %>%
kable_styling(full_width = FALSE)
trait | num_benchmark_genes | num_gene_08p | num_gene_08m | num_gene_05m | num_gene_0508 | pval_08p08m | pval_08p05m | pval_08p0508 |
---|---|---|---|---|---|---|---|---|
LDL-ukb-d-30780_irnt | 92 | 73 | 5394 | 5321 | 73 | 0.00088 | 0.00073 | 0.74505 |
IBD-ebi-a-GCST004131 | 47 | 28 | 3749 | 3699 | 50 | 0.00000 | 0.00000 | 0.00147 |
aFib-ebi-a-GCST006414 | 14 | 53 | 3540 | 3489 | 51 | 0.00000 | 0.00000 | 0.20550 |
SBP-ukb-a-360 | 7 | 35 | 4909 | 4858 | 51 | 1.00000 | 1.00000 | 1.00000 |
T1D-GCST90014023 | 33 | 17 | 2855 | 2822 | 31 | 0.16891 | 0.16058 | 1.00000 |
Height-panukb | 15751 | 208 | 13763 | 13584 | 179 | 0.01482 | 0.01179 | 0.87110 |
HTN-panukb | 19 | 42 | 5465 | 5400 | 65 | 0.11544 | 0.10985 | 1.00000 |
PLT-panukb | 15578 | 119 | 10616 | 10471 | 145 | 0.38265 | 0.38415 | 0.08045 |
RA-panukb | 17 | 5 | 332 | 330 | 2 | 1.00000 | 1.00000 | 1.00000 |
RBC-panukb | 15704 | 122 | 10154 | 9976 | 178 | 0.27785 | 0.23099 | 0.73851 |
ATH_gtexukb | 44 | 21 | 3276 | 3227 | 49 | 0.02251 | 0.02198 | 0.21228 |
BMI-panukb | 15275 | 53 | 9215 | 9114 | 101 | 0.58372 | 0.58390 | 1.00000 |
HB-panukb | 15520 | 90 | 8649 | 8522 | 127 | 0.00337 | 0.00336 | 0.08305 |
T2D-panukb | 6 | 14 | 2460 | 2423 | 37 | 1.00000 | 1.00000 | 1.00000 |
SCZ-ieu-b-5102 | 57 | 15 | 3547 | 3511 | 36 | 1.00000 | 1.00000 | 1.00000 |
BIP-ieu-b-5110 | 0 | 9 | 2660 | 2622 | 38 | 1.00000 | 1.00000 | 1.00000 |
ASD-ieu-a-1185 | 0 | 0 | 107 | 103 | 4 | 1.00000 | 1.00000 | 1.00000 |
ADHD-ieu-a-1183 | 0 | 0 | 256 | 249 | 7 | 1.00000 | 1.00000 | 1.00000 |
PD-ieu-b-7 | 3 | 4 | 726 | 717 | 9 | 0.01637 | 0.01657 | 0.30769 |
NS-ukb-a-230 | 2 | 7 | 1201 | 1189 | 12 | 1.00000 | 1.00000 | 1.00000 |
MDD-ieu-b-102 | 0 | 0 | 799 | 796 | 3 | 1.00000 | 1.00000 | 1.00000 |
WBC-ieu-b-30 | 15680 | 243 | 11369 | 11103 | 266 | 0.02287 | 0.01847 | 0.68161 |
df <- readRDS("/project/xinhe/xsun/multi_group_ctwas/25.multi_group_validation_classfier_0602/results/fisher_xgboost_binary/results_y_pred_xgboost_gene_score_bin_prob0.5_all.RDS")
df %>%
mutate(across(starts_with("pval_"),
~ifelse(. < 0.05,
cell_spec(sprintf("%.5f", .), color = "red"),
sprintf("%.5f", .)))) %>%
kable(escape = FALSE, format = "html",
caption = "Benchmark gene cutoff (XGboost prediction): 0.5, sigificant ones are highlighted") %>%
kable_styling(full_width = FALSE)
trait | num_benchmark_genes | num_gene_08p | num_gene_08m | num_gene_05m | num_gene_0508 | pval_08p08m | pval_08p05m | pval_08p0508 |
---|---|---|---|---|---|---|---|---|
LDL-ukb-d-30780_irnt | 89 | 73 | 5394 | 5321 | 73 | 0.00014 | 0.00010 | 0.74505 |
IBD-ebi-a-GCST004131 | 111 | 28 | 3749 | 3699 | 50 | 0.00000 | 0.00000 | 0.00266 |
aFib-ebi-a-GCST006414 | 34 | 53 | 3540 | 3489 | 51 | 0.00030 | 0.00027 | 0.36316 |
SBP-ukb-a-360 | 112 | 35 | 4909 | 4858 | 51 | 0.00732 | 0.00682 | 0.39306 |
T1D-GCST90014023 | 122 | 17 | 2855 | 2822 | 31 | 1.00000 | 1.00000 | 0.54296 |
Height-panukb | 16807 | 208 | 13763 | 13584 | 179 | 0.00043 | 0.00043 | 0.32667 |
HTN-panukb | 199 | 42 | 5465 | 5400 | 65 | 1.00000 | 1.00000 | 0.15414 |
PLT-panukb | 16707 | 119 | 10616 | 10471 | 145 | 0.07674 | 0.07670 | 0.48462 |
RA-panukb | 30 | 5 | 332 | 330 | 2 | 1.00000 | 1.00000 | 1.00000 |
RBC-panukb | 11994 | 122 | 10154 | 9976 | 178 | 0.01093 | 0.01086 | 1.00000 |
ATH_gtexukb | 120 | 21 | 3276 | 3227 | 49 | 0.04533 | 0.04657 | 0.08696 |
BMI-panukb | 14025 | 53 | 9215 | 9114 | 101 | 0.41054 | 0.41050 | 1.00000 |
HB-panukb | 1462 | 90 | 8649 | 8522 | 127 | 0.07592 | 0.07363 | 1.00000 |
T2D-panukb | 29 | 14 | 2460 | 2423 | 37 | 0.10257 | 0.10405 | 0.27451 |
SCZ-ieu-b-5102 | 303 | 15 | 3547 | 3511 | 36 | 0.36496 | 0.36237 | 1.00000 |
BIP-ieu-b-5110 | 104 | 9 | 2660 | 2622 | 38 | 1.00000 | 1.00000 | 1.00000 |
ASD-ieu-a-1185 | 6 | 0 | 107 | 103 | 4 | 1.00000 | 1.00000 | 1.00000 |
ADHD-ieu-a-1183 | 1 | 0 | 256 | 249 | 7 | 1.00000 | 1.00000 | 1.00000 |
PD-ieu-b-7 | 11 | 4 | 726 | 717 | 9 | 0.00080 | 0.00082 | 0.07692 |
NS-ukb-a-230 | 51 | 7 | 1201 | 1189 | 12 | 1.00000 | 1.00000 | 1.00000 |
MDD-ieu-b-102 | 35 | 0 | 799 | 796 | 3 | 1.00000 | 1.00000 | 1.00000 |
WBC-ieu-b-30 | 14554 | 243 | 11369 | 11103 | 266 | 0.00006 | 0.00005 | 1.00000 |
df <- readRDS("/project/xinhe/xsun/multi_group_ctwas/25.multi_group_validation_classfier_0602/results/fisher_xgboost_binary/results_y_pred_xgboost_gene_score_bin_prob0.6_all.RDS")
df %>%
mutate(across(starts_with("pval_"),
~ifelse(. < 0.05,
cell_spec(sprintf("%.5f", .), color = "red"),
sprintf("%.5f", .)))) %>%
kable(escape = FALSE, format = "html",
caption = "Benchmark gene cutoff (XGboost prediction): 0.6, sigificant ones are highlighted") %>%
kable_styling(full_width = FALSE)
trait | num_benchmark_genes | num_gene_08p | num_gene_08m | num_gene_05m | num_gene_0508 | pval_08p08m | pval_08p05m | pval_08p0508 |
---|---|---|---|---|---|---|---|---|
LDL-ukb-d-30780_irnt | 50 | 73 | 5394 | 5321 | 73 | 0.00313 | 0.00256 | 1.00000 |
IBD-ebi-a-GCST004131 | 71 | 28 | 3749 | 3699 | 50 | 0.00002 | 0.00002 | 0.02060 |
aFib-ebi-a-GCST006414 | 12 | 53 | 3540 | 3489 | 51 | 0.00719 | 0.00581 | 1.00000 |
SBP-ukb-a-360 | 41 | 35 | 4909 | 4858 | 51 | 0.00772 | 0.00788 | 0.16279 |
T1D-GCST90014023 | 81 | 17 | 2855 | 2822 | 31 | 1.00000 | 1.00000 | 1.00000 |
Height-panukb | 16646 | 208 | 13763 | 13584 | 179 | 0.00059 | 0.00042 | 0.47319 |
HTN-panukb | 128 | 42 | 5465 | 5400 | 65 | 1.00000 | 1.00000 | 0.27791 |
PLT-panukb | 7535 | 119 | 10616 | 10471 | 145 | 0.00038 | 0.00027 | 0.53086 |
RA-panukb | 26 | 5 | 332 | 330 | 2 | 1.00000 | 1.00000 | 1.00000 |
RBC-panukb | 1861 | 122 | 10154 | 9976 | 178 | 0.00000 | 0.00000 | 0.21649 |
ATH_gtexukb | 64 | 21 | 3276 | 3227 | 49 | 0.19616 | 0.19882 | 0.30000 |
BMI-panukb | 1789 | 53 | 9215 | 9114 | 101 | 0.17654 | 0.17453 | 0.82876 |
HB-panukb | 319 | 90 | 8649 | 8522 | 127 | 0.04774 | 0.04665 | 0.49425 |
T2D-panukb | 15 | 14 | 2460 | 2423 | 37 | 0.06063 | 0.06153 | 0.27451 |
SCZ-ieu-b-5102 | 185 | 15 | 3547 | 3511 | 36 | 0.22534 | 0.22065 | 1.00000 |
BIP-ieu-b-5110 | 68 | 9 | 2660 | 2622 | 38 | 1.00000 | 1.00000 | 1.00000 |
ASD-ieu-a-1185 | 4 | 0 | 107 | 103 | 4 | 1.00000 | 1.00000 | 1.00000 |
ADHD-ieu-a-1183 | 1 | 0 | 256 | 249 | 7 | 1.00000 | 1.00000 | 1.00000 |
PD-ieu-b-7 | 7 | 4 | 726 | 717 | 9 | 0.00034 | 0.00034 | 0.07692 |
NS-ukb-a-230 | 24 | 7 | 1201 | 1189 | 12 | 1.00000 | 1.00000 | 1.00000 |
MDD-ieu-b-102 | 25 | 0 | 799 | 796 | 3 | 1.00000 | 1.00000 | 1.00000 |
WBC-ieu-b-30 | 2689 | 243 | 11369 | 11103 | 266 | 0.00000 | 0.00000 | 0.34379 |
df <- readRDS("/project/xinhe/xsun/multi_group_ctwas/25.multi_group_validation_classfier_0602/results/fisher_xgboost_binary/results_y_pred_xgboost_gene_score_bin_prob0.7_all.RDS")
df %>%
mutate(across(starts_with("pval_"),
~ifelse(. < 0.05,
cell_spec(sprintf("%.5f", .), color = "red"),
sprintf("%.5f", .)))) %>%
kable(escape = FALSE, format = "html",
caption = "Benchmark gene cutoff (XGboost prediction): 0.7, sigificant ones are highlighted") %>%
kable_styling(full_width = FALSE)
trait | num_benchmark_genes | num_gene_08p | num_gene_08m | num_gene_05m | num_gene_0508 | pval_08p08m | pval_08p05m | pval_08p0508 |
---|---|---|---|---|---|---|---|---|
LDL-ukb-d-30780_irnt | 20 | 73 | 5394 | 5321 | 73 | 0.02344 | 0.01918 | 1.00000 |
IBD-ebi-a-GCST004131 | 38 | 28 | 3749 | 3699 | 50 | 0.00117 | 0.00110 | 0.12919 |
aFib-ebi-a-GCST006414 | 7 | 53 | 3540 | 3489 | 51 | 0.07165 | 0.05855 | 1.00000 |
SBP-ukb-a-360 | 17 | 35 | 4909 | 4858 | 51 | 1.00000 | 1.00000 | 1.00000 |
T1D-GCST90014023 | 56 | 17 | 2855 | 2822 | 31 | 1.00000 | 1.00000 | 1.00000 |
Height-panukb | 16036 | 208 | 13763 | 13584 | 179 | 0.00050 | 0.00050 | 0.52703 |
HTN-panukb | 76 | 42 | 5465 | 5400 | 65 | 1.00000 | 1.00000 | 0.51860 |
PLT-panukb | 720 | 119 | 10616 | 10471 | 145 | 0.07638 | 0.07481 | 0.82302 |
RA-panukb | 24 | 5 | 332 | 330 | 2 | 1.00000 | 1.00000 | 1.00000 |
RBC-panukb | 313 | 122 | 10154 | 9976 | 178 | 0.03521 | 0.03415 | 0.36371 |
ATH_gtexukb | 43 | 21 | 3276 | 3227 | 49 | 0.15361 | 0.15575 | 0.30000 |
BMI-panukb | 248 | 53 | 9215 | 9114 | 101 | 0.00524 | 0.00499 | 0.23375 |
HB-panukb | 91 | 90 | 8649 | 8522 | 127 | 0.34650 | 0.35062 | 0.41475 |
T2D-panukb | 10 | 14 | 2460 | 2423 | 37 | 0.03899 | 0.03957 | 0.27451 |
SCZ-ieu-b-5102 | 104 | 15 | 3547 | 3511 | 36 | 1.00000 | 1.00000 | 1.00000 |
BIP-ieu-b-5110 | 16 | 9 | 2660 | 2622 | 38 | 1.00000 | 1.00000 | 1.00000 |
ASD-ieu-a-1185 | 2 | 0 | 107 | 103 | 4 | 1.00000 | 1.00000 | 1.00000 |
ADHD-ieu-a-1183 | 1 | 0 | 256 | 249 | 7 | 1.00000 | 1.00000 | 1.00000 |
PD-ieu-b-7 | 4 | 4 | 726 | 717 | 9 | 0.01637 | 0.01657 | 0.30769 |
NS-ukb-a-230 | 10 | 7 | 1201 | 1189 | 12 | 1.00000 | 1.00000 | 1.00000 |
MDD-ieu-b-102 | 16 | 0 | 799 | 796 | 3 | 1.00000 | 1.00000 | 1.00000 |
WBC-ieu-b-30 | 501 | 243 | 11369 | 11103 | 266 | 0.00168 | 0.00088 | 0.72005 |
df <- readRDS("/project/xinhe/xsun/multi_group_ctwas/25.multi_group_validation_classfier_0602/results/fisher_xgboost_binary/results_y_pred_xgboost_gene_score_bin_prob0.8_all.RDS")
df %>%
mutate(across(starts_with("pval_"),
~ifelse(. < 0.05,
cell_spec(sprintf("%.5f", .), color = "red"),
sprintf("%.5f", .)))) %>%
kable(escape = FALSE, format = "html",
caption = "Benchmark gene cutoff (XGboost prediction): 0.8, sigificant ones are highlighted") %>%
kable_styling(full_width = FALSE)
trait | num_benchmark_genes | num_gene_08p | num_gene_08m | num_gene_05m | num_gene_0508 | pval_08p08m | pval_08p05m | pval_08p0508 |
---|---|---|---|---|---|---|---|---|
LDL-ukb-d-30780_irnt | 6 | 73 | 5394 | 5321 | 73 | 1.00000 | 1.00000 | 0.49655 |
IBD-ebi-a-GCST004131 | 22 | 28 | 3749 | 3699 | 50 | 0.12562 | 0.12057 | 1.00000 |
aFib-ebi-a-GCST006414 | 1 | 53 | 3540 | 3489 | 51 | 1.00000 | 1.00000 | 1.00000 |
SBP-ukb-a-360 | 4 | 35 | 4909 | 4858 | 51 | 1.00000 | 1.00000 | 1.00000 |
T1D-GCST90014023 | 24 | 17 | 2855 | 2822 | 31 | 1.00000 | 1.00000 | 1.00000 |
Height-panukb | 7198 | 208 | 13763 | 13584 | 179 | 0.08952 | 0.08877 | 0.26242 |
HTN-panukb | 15 | 42 | 5465 | 5400 | 65 | 1.00000 | 1.00000 | 1.00000 |
PLT-panukb | 77 | 119 | 10616 | 10471 | 145 | 1.00000 | 1.00000 | 0.25445 |
RA-panukb | 21 | 5 | 332 | 330 | 2 | 1.00000 | 1.00000 | 1.00000 |
RBC-panukb | 71 | 122 | 10154 | 9976 | 178 | 0.05813 | 0.05995 | 0.16457 |
ATH_gtexukb | 21 | 21 | 3276 | 3227 | 49 | 1.00000 | 1.00000 | 1.00000 |
BMI-panukb | 10 | 53 | 9215 | 9114 | 101 | 1.00000 | 1.00000 | 1.00000 |
HB-panukb | 44 | 90 | 8649 | 8522 | 127 | 1.00000 | 1.00000 | 1.00000 |
T2D-panukb | 7 | 14 | 2460 | 2423 | 37 | 0.03351 | 0.03401 | 0.27451 |
SCZ-ieu-b-5102 | 21 | 15 | 3547 | 3511 | 36 | 1.00000 | 1.00000 | 1.00000 |
BIP-ieu-b-5110 | 5 | 9 | 2660 | 2622 | 38 | 1.00000 | 1.00000 | 1.00000 |
ASD-ieu-a-1185 | 0 | 0 | 107 | 103 | 4 | 1.00000 | 1.00000 | 1.00000 |
ADHD-ieu-a-1183 | 1 | 0 | 256 | 249 | 7 | 1.00000 | 1.00000 | 1.00000 |
PD-ieu-b-7 | 0 | 4 | 726 | 717 | 9 | 1.00000 | 1.00000 | 1.00000 |
NS-ukb-a-230 | 5 | 7 | 1201 | 1189 | 12 | 1.00000 | 1.00000 | 1.00000 |
MDD-ieu-b-102 | 1 | 0 | 799 | 796 | 3 | 1.00000 | 1.00000 | 1.00000 |
WBC-ieu-b-30 | 123 | 243 | 11369 | 11103 | 266 | 0.35855 | 0.35371 | 1.00000 |
df <- readRDS("/project/xinhe/xsun/multi_group_ctwas/25.multi_group_validation_classfier_0602/results/fisher_xgboost_binary/results_y_pred_xgboost_gene_score_bin_trunc500_prob0.5_all.RDS")
df %>%
mutate(across(starts_with("pval_"),
~ifelse(. < 0.05,
cell_spec(sprintf("%.5f", .), color = "red"),
sprintf("%.5f", .)))) %>%
kable(escape = FALSE, format = "html",
caption = "Benchmark gene cutoff (XGboost prediction): 0.5, sigificant ones are highlighted") %>%
kable_styling(full_width = FALSE)
trait | num_benchmark_genes | num_gene_08p | num_gene_08m | num_gene_05m | num_gene_0508 | pval_08p08m | pval_08p05m | pval_08p0508 |
---|---|---|---|---|---|---|---|---|
LDL-ukb-d-30780_irnt | 36 | 73 | 5394 | 5321 | 73 | 0.00100 | 0.00074 | 1.00000 |
IBD-ebi-a-GCST004131 | 56 | 28 | 3749 | 3699 | 50 | 0.00038 | 0.00036 | 0.05315 |
aFib-ebi-a-GCST006414 | 26 | 53 | 3540 | 3489 | 51 | 0.00025 | 0.00022 | 0.36316 |
SBP-ukb-a-360 | 9 | 35 | 4909 | 4858 | 51 | 1.00000 | 1.00000 | 1.00000 |
T1D-GCST90014023 | 63 | 17 | 2855 | 2822 | 31 | 0.21739 | 0.20525 | 1.00000 |
Height-panukb | 46 | 208 | 13763 | 13584 | 179 | 0.12915 | 0.12680 | 1.00000 |
HTN-panukb | 9 | 42 | 5465 | 5400 | 65 | 1.00000 | 1.00000 | 1.00000 |
PLT-panukb | 30 | 119 | 10616 | 10471 | 145 | 0.27653 | 0.27154 | 1.00000 |
RA-panukb | 29 | 5 | 332 | 330 | 2 | 1.00000 | 1.00000 | 1.00000 |
RBC-panukb | 21 | 122 | 10154 | 9976 | 178 | 0.22202 | 0.21599 | 1.00000 |
ATH_gtexukb | 68 | 21 | 3276 | 3227 | 49 | 0.03656 | 0.03336 | 0.63237 |
BMI-panukb | 9 | 53 | 9215 | 9114 | 101 | 1.00000 | 1.00000 | 1.00000 |
HB-panukb | 39 | 90 | 8649 | 8522 | 127 | 1.00000 | 1.00000 | 1.00000 |
T2D-panukb | 19 | 14 | 2460 | 2423 | 37 | 0.09742 | 0.09359 | 0.47765 |
SCZ-ieu-b-5102 | 68 | 15 | 3547 | 3511 | 36 | 0.10426 | 0.09756 | 1.00000 |
BIP-ieu-b-5110 | 26 | 9 | 2660 | 2622 | 38 | 1.00000 | 1.00000 | 1.00000 |
ASD-ieu-a-1185 | 6 | 0 | 107 | 103 | 4 | 1.00000 | 1.00000 | 1.00000 |
ADHD-ieu-a-1183 | 4 | 0 | 256 | 249 | 7 | 1.00000 | 1.00000 | 1.00000 |
PD-ieu-b-7 | 11 | 4 | 726 | 717 | 9 | 0.00080 | 0.00082 | 0.07692 |
NS-ukb-a-230 | 13 | 7 | 1201 | 1189 | 12 | 1.00000 | 1.00000 | 1.00000 |
MDD-ieu-b-102 | 30 | 0 | 799 | 796 | 3 | 1.00000 | 1.00000 | 1.00000 |
WBC-ieu-b-30 | 38 | 243 | 11369 | 11103 | 266 | 0.04463 | 0.04419 | 0.35238 |
df <- readRDS("/project/xinhe/xsun/multi_group_ctwas/25.multi_group_validation_classfier_0602/results/fisher_xgboost_binary/results_y_pred_xgboost_gene_score_bin_trunc500_prob0.6_all.RDS")
df %>%
mutate(across(starts_with("pval_"),
~ifelse(. < 0.05,
cell_spec(sprintf("%.5f", .), color = "red"),
sprintf("%.5f", .)))) %>%
kable(escape = FALSE, format = "html",
caption = "Benchmark gene cutoff (XGboost prediction): 0.6, sigificant ones are highlighted") %>%
kable_styling(full_width = FALSE)
trait | num_benchmark_genes | num_gene_08p | num_gene_08m | num_gene_05m | num_gene_0508 | pval_08p08m | pval_08p05m | pval_08p0508 |
---|---|---|---|---|---|---|---|---|
LDL-ukb-d-30780_irnt | 27 | 73 | 5394 | 5321 | 73 | 0.00035 | 0.00023 | 1.00000 |
IBD-ebi-a-GCST004131 | 45 | 28 | 3749 | 3699 | 50 | 0.00279 | 0.00290 | 0.04306 |
aFib-ebi-a-GCST006414 | 13 | 53 | 3540 | 3489 | 51 | 0.00891 | 0.00740 | 1.00000 |
SBP-ukb-a-360 | 2 | 35 | 4909 | 4858 | 51 | 1.00000 | 1.00000 | 1.00000 |
T1D-GCST90014023 | 44 | 17 | 2855 | 2822 | 31 | 1.00000 | 1.00000 | 1.00000 |
Height-panukb | 31 | 208 | 13763 | 13584 | 179 | 0.34322 | 0.33680 | 1.00000 |
HTN-panukb | 6 | 42 | 5465 | 5400 | 65 | 1.00000 | 1.00000 | 1.00000 |
PLT-panukb | 21 | 119 | 10616 | 10471 | 145 | 1.00000 | 1.00000 | 1.00000 |
RA-panukb | 25 | 5 | 332 | 330 | 2 | 1.00000 | 1.00000 | 1.00000 |
RBC-panukb | 15 | 122 | 10154 | 9976 | 178 | 0.16412 | 0.16678 | 0.40667 |
ATH_gtexukb | 44 | 21 | 3276 | 3227 | 49 | 0.01918 | 0.01757 | 0.57803 |
BMI-panukb | 3 | 53 | 9215 | 9114 | 101 | 1.00000 | 1.00000 | 1.00000 |
HB-panukb | 14 | 90 | 8649 | 8522 | 127 | 1.00000 | 1.00000 | 1.00000 |
T2D-panukb | 12 | 14 | 2460 | 2423 | 37 | 0.06063 | 0.05609 | 0.47765 |
SCZ-ieu-b-5102 | 37 | 15 | 3547 | 3511 | 36 | 1.00000 | 1.00000 | 1.00000 |
BIP-ieu-b-5110 | 1 | 9 | 2660 | 2622 | 38 | 1.00000 | 1.00000 | 1.00000 |
ASD-ieu-a-1185 | 4 | 0 | 107 | 103 | 4 | 1.00000 | 1.00000 | 1.00000 |
ADHD-ieu-a-1183 | 1 | 0 | 256 | 249 | 7 | 1.00000 | 1.00000 | 1.00000 |
PD-ieu-b-7 | 6 | 4 | 726 | 717 | 9 | 0.02717 | 0.02751 | 0.30769 |
NS-ukb-a-230 | 8 | 7 | 1201 | 1189 | 12 | 1.00000 | 1.00000 | 1.00000 |
MDD-ieu-b-102 | 22 | 0 | 799 | 796 | 3 | 1.00000 | 1.00000 | 1.00000 |
WBC-ieu-b-30 | 27 | 243 | 11369 | 11103 | 266 | 0.43541 | 0.44302 | 0.47741 |
df <- readRDS("/project/xinhe/xsun/multi_group_ctwas/25.multi_group_validation_classfier_0602/results/fisher_xgboost_binary/results_y_pred_xgboost_gene_score_bin_trunc500_prob0.7_all.RDS")
df %>%
mutate(across(starts_with("pval_"),
~ifelse(. < 0.05,
cell_spec(sprintf("%.5f", .), color = "red"),
sprintf("%.5f", .)))) %>%
kable(escape = FALSE, format = "html",
caption = "Benchmark gene cutoff (XGboost prediction): 0.7, sigificant ones are highlighted") %>%
kable_styling(full_width = FALSE)
trait | num_benchmark_genes | num_gene_08p | num_gene_08m | num_gene_05m | num_gene_0508 | pval_08p08m | pval_08p05m | pval_08p0508 |
---|---|---|---|---|---|---|---|---|
LDL-ukb-d-30780_irnt | 21 | 73 | 5394 | 5321 | 73 | 0.00012 | 0.00008 | 0.68090 |
IBD-ebi-a-GCST004131 | 25 | 28 | 3749 | 3699 | 50 | 0.00051 | 0.00053 | 0.04306 |
aFib-ebi-a-GCST006414 | 6 | 53 | 3540 | 3489 | 51 | 0.00208 | 0.00213 | 0.49533 |
SBP-ukb-a-360 | 1 | 35 | 4909 | 4858 | 51 | 1.00000 | 1.00000 | 1.00000 |
T1D-GCST90014023 | 30 | 17 | 2855 | 2822 | 31 | 1.00000 | 1.00000 | 1.00000 |
Height-panukb | 17 | 208 | 13763 | 13584 | 179 | 0.21347 | 0.20392 | 1.00000 |
HTN-panukb | 4 | 42 | 5465 | 5400 | 65 | 1.00000 | 1.00000 | 1.00000 |
PLT-panukb | 13 | 119 | 10616 | 10471 | 145 | 1.00000 | 1.00000 | 1.00000 |
RA-panukb | 23 | 5 | 332 | 330 | 2 | 1.00000 | 1.00000 | 1.00000 |
RBC-panukb | 13 | 122 | 10154 | 9976 | 178 | 1.00000 | 1.00000 | 1.00000 |
ATH_gtexukb | 31 | 21 | 3276 | 3227 | 49 | 0.01322 | 0.01360 | 0.08696 |
BMI-panukb | 1 | 53 | 9215 | 9114 | 101 | 1.00000 | 1.00000 | 1.00000 |
HB-panukb | 12 | 90 | 8649 | 8522 | 127 | 1.00000 | 1.00000 | 1.00000 |
T2D-panukb | 11 | 14 | 2460 | 2423 | 37 | 0.05527 | 0.05061 | 0.47765 |
SCZ-ieu-b-5102 | 13 | 15 | 3547 | 3511 | 36 | 1.00000 | 1.00000 | 1.00000 |
BIP-ieu-b-5110 | 0 | 9 | 2660 | 2622 | 38 | 1.00000 | 1.00000 | 1.00000 |
ASD-ieu-a-1185 | 2 | 0 | 107 | 103 | 4 | 1.00000 | 1.00000 | 1.00000 |
ADHD-ieu-a-1183 | 1 | 0 | 256 | 249 | 7 | 1.00000 | 1.00000 | 1.00000 |
PD-ieu-b-7 | 3 | 4 | 726 | 717 | 9 | 0.01637 | 0.01657 | 0.30769 |
NS-ukb-a-230 | 1 | 7 | 1201 | 1189 | 12 | 1.00000 | 1.00000 | 1.00000 |
MDD-ieu-b-102 | 15 | 0 | 799 | 796 | 3 | 1.00000 | 1.00000 | 1.00000 |
WBC-ieu-b-30 | 20 | 243 | 11369 | 11103 | 266 | 0.34513 | 0.35168 | 0.47741 |
df <- readRDS("/project/xinhe/xsun/multi_group_ctwas/25.multi_group_validation_classfier_0602/results/fisher_xgboost_binary/results_y_pred_xgboost_gene_score_bin_trunc500_prob0.8_all.RDS")
df %>%
mutate(across(starts_with("pval_"),
~ifelse(. < 0.05,
cell_spec(sprintf("%.5f", .), color = "red"),
sprintf("%.5f", .)))) %>%
kable(escape = FALSE, format = "html",
caption = "Benchmark gene cutoff (XGboost prediction): 0.8, sigificant ones are highlighted") %>%
kable_styling(full_width = FALSE)
trait | num_benchmark_genes | num_gene_08p | num_gene_08m | num_gene_05m | num_gene_0508 | pval_08p08m | pval_08p05m | pval_08p0508 |
---|---|---|---|---|---|---|---|---|
LDL-ukb-d-30780_irnt | 13 | 73 | 5394 | 5321 | 73 | 0.01065 | 0.00918 | 1.00000 |
IBD-ebi-a-GCST004131 | 19 | 28 | 3749 | 3699 | 50 | 0.00673 | 0.00690 | 0.12587 |
aFib-ebi-a-GCST006414 | 1 | 53 | 3540 | 3489 | 51 | 1.00000 | 1.00000 | 1.00000 |
SBP-ukb-a-360 | 0 | 35 | 4909 | 4858 | 51 | 1.00000 | 1.00000 | 1.00000 |
T1D-GCST90014023 | 26 | 17 | 2855 | 2822 | 31 | 1.00000 | 1.00000 | 1.00000 |
Height-panukb | 10 | 208 | 13763 | 13584 | 179 | 0.13933 | 0.14102 | 1.00000 |
HTN-panukb | 0 | 42 | 5465 | 5400 | 65 | 1.00000 | 1.00000 | 1.00000 |
PLT-panukb | 9 | 119 | 10616 | 10471 | 145 | 1.00000 | 1.00000 | 1.00000 |
RA-panukb | 21 | 5 | 332 | 330 | 2 | 1.00000 | 1.00000 | 1.00000 |
RBC-panukb | 10 | 122 | 10154 | 9976 | 178 | 1.00000 | 1.00000 | 1.00000 |
ATH_gtexukb | 21 | 21 | 3276 | 3227 | 49 | 0.12593 | 0.12772 | 0.30000 |
BMI-panukb | 0 | 53 | 9215 | 9114 | 101 | 1.00000 | 1.00000 | 1.00000 |
HB-panukb | 10 | 90 | 8649 | 8522 | 127 | 1.00000 | 1.00000 | 1.00000 |
T2D-panukb | 8 | 14 | 2460 | 2423 | 37 | 0.04445 | 0.03957 | 0.47765 |
SCZ-ieu-b-5102 | 7 | 15 | 3547 | 3511 | 36 | 1.00000 | 1.00000 | 1.00000 |
BIP-ieu-b-5110 | 0 | 9 | 2660 | 2622 | 38 | 1.00000 | 1.00000 | 1.00000 |
ASD-ieu-a-1185 | 0 | 0 | 107 | 103 | 4 | 1.00000 | 1.00000 | 1.00000 |
ADHD-ieu-a-1183 | 1 | 0 | 256 | 249 | 7 | 1.00000 | 1.00000 | 1.00000 |
PD-ieu-b-7 | 1 | 4 | 726 | 717 | 9 | 1.00000 | 1.00000 | 1.00000 |
NS-ukb-a-230 | 0 | 7 | 1201 | 1189 | 12 | 1.00000 | 1.00000 | 1.00000 |
MDD-ieu-b-102 | 0 | 0 | 799 | 796 | 3 | 1.00000 | 1.00000 | 1.00000 |
WBC-ieu-b-30 | 10 | 243 | 11369 | 11103 | 266 | 1.00000 | 1.00000 | 1.00000 |
df <- readRDS("/project/xinhe/xsun/multi_group_ctwas/25.multi_group_validation_classfier_0602/results/fisher_xgboost_binary/results_y_pred_xgboost_gene_score_bin_trunc1000_prob0.5_all.RDS")
df %>%
mutate(across(starts_with("pval_"),
~ifelse(. < 0.05,
cell_spec(sprintf("%.5f", .), color = "red"),
sprintf("%.5f", .)))) %>%
kable(escape = FALSE, format = "html",
caption = "Benchmark gene cutoff (XGboost prediction): 0.5, sigificant ones are highlighted") %>%
kable_styling(full_width = FALSE)
trait | num_benchmark_genes | num_gene_08p | num_gene_08m | num_gene_05m | num_gene_0508 | pval_08p08m | pval_08p05m | pval_08p0508 |
---|---|---|---|---|---|---|---|---|
LDL-ukb-d-30780_irnt | 52 | 73 | 5394 | 5321 | 73 | 0.00054 | 0.00035 | 1.00000 |
IBD-ebi-a-GCST004131 | 71 | 28 | 3749 | 3699 | 50 | 0.00100 | 0.00082 | 0.44778 |
aFib-ebi-a-GCST006414 | 26 | 53 | 3540 | 3489 | 51 | 0.00098 | 0.00081 | 0.61790 |
SBP-ukb-a-360 | 29 | 35 | 4909 | 4858 | 51 | 1.00000 | 1.00000 | 1.00000 |
T1D-GCST90014023 | 111 | 17 | 2855 | 2822 | 31 | 1.00000 | 1.00000 | 0.53280 |
Height-panukb | 49 | 208 | 13763 | 13584 | 179 | 0.00478 | 0.00462 | 0.37882 |
HTN-panukb | 17 | 42 | 5465 | 5400 | 65 | 1.00000 | 1.00000 | 1.00000 |
PLT-panukb | 44 | 119 | 10616 | 10471 | 145 | 0.37442 | 0.36420 | 1.00000 |
RA-panukb | 37 | 5 | 332 | 330 | 2 | 1.00000 | 1.00000 | 1.00000 |
RBC-panukb | 29 | 122 | 10154 | 9976 | 178 | 0.00348 | 0.00326 | 0.30765 |
ATH_gtexukb | 105 | 21 | 3276 | 3227 | 49 | 0.06320 | 0.06139 | 0.57803 |
BMI-panukb | 23 | 53 | 9215 | 9114 | 101 | 0.10847 | 0.09920 | 1.00000 |
HB-panukb | 77 | 90 | 8649 | 8522 | 127 | 0.02120 | 0.02178 | 0.17089 |
T2D-panukb | 15 | 14 | 2460 | 2423 | 37 | 0.07129 | 0.07233 | 0.27451 |
SCZ-ieu-b-5102 | 96 | 15 | 3547 | 3511 | 36 | 0.01066 | 0.00979 | 0.57143 |
BIP-ieu-b-5110 | 31 | 9 | 2660 | 2622 | 38 | 1.00000 | 1.00000 | 1.00000 |
ASD-ieu-a-1185 | 9 | 0 | 107 | 103 | 4 | 1.00000 | 1.00000 | 1.00000 |
ADHD-ieu-a-1183 | 1 | 0 | 256 | 249 | 7 | 1.00000 | 1.00000 | 1.00000 |
PD-ieu-b-7 | 11 | 4 | 726 | 717 | 9 | 0.00080 | 0.00082 | 0.07692 |
NS-ukb-a-230 | 36 | 7 | 1201 | 1189 | 12 | 1.00000 | 1.00000 | 1.00000 |
MDD-ieu-b-102 | 27 | 0 | 799 | 796 | 3 | 1.00000 | 1.00000 | 1.00000 |
WBC-ieu-b-30 | 67 | 243 | 11369 | 11103 | 266 | 0.04480 | 0.04144 | 0.71413 |
df <- readRDS("/project/xinhe/xsun/multi_group_ctwas/25.multi_group_validation_classfier_0602/results/fisher_xgboost_binary/results_y_pred_xgboost_gene_score_bin_trunc500_prob0.6_all.RDS")
df %>%
mutate(across(starts_with("pval_"),
~ifelse(. < 0.05,
cell_spec(sprintf("%.5f", .), color = "red"),
sprintf("%.5f", .)))) %>%
kable(escape = FALSE, format = "html",
caption = "Benchmark gene cutoff (XGboost prediction): 0.6, sigificant ones are highlighted") %>%
kable_styling(full_width = FALSE)
trait | num_benchmark_genes | num_gene_08p | num_gene_08m | num_gene_05m | num_gene_0508 | pval_08p08m | pval_08p05m | pval_08p0508 |
---|---|---|---|---|---|---|---|---|
LDL-ukb-d-30780_irnt | 27 | 73 | 5394 | 5321 | 73 | 0.00035 | 0.00023 | 1.00000 |
IBD-ebi-a-GCST004131 | 45 | 28 | 3749 | 3699 | 50 | 0.00279 | 0.00290 | 0.04306 |
aFib-ebi-a-GCST006414 | 13 | 53 | 3540 | 3489 | 51 | 0.00891 | 0.00740 | 1.00000 |
SBP-ukb-a-360 | 2 | 35 | 4909 | 4858 | 51 | 1.00000 | 1.00000 | 1.00000 |
T1D-GCST90014023 | 44 | 17 | 2855 | 2822 | 31 | 1.00000 | 1.00000 | 1.00000 |
Height-panukb | 31 | 208 | 13763 | 13584 | 179 | 0.34322 | 0.33680 | 1.00000 |
HTN-panukb | 6 | 42 | 5465 | 5400 | 65 | 1.00000 | 1.00000 | 1.00000 |
PLT-panukb | 21 | 119 | 10616 | 10471 | 145 | 1.00000 | 1.00000 | 1.00000 |
RA-panukb | 25 | 5 | 332 | 330 | 2 | 1.00000 | 1.00000 | 1.00000 |
RBC-panukb | 15 | 122 | 10154 | 9976 | 178 | 0.16412 | 0.16678 | 0.40667 |
ATH_gtexukb | 44 | 21 | 3276 | 3227 | 49 | 0.01918 | 0.01757 | 0.57803 |
BMI-panukb | 3 | 53 | 9215 | 9114 | 101 | 1.00000 | 1.00000 | 1.00000 |
HB-panukb | 14 | 90 | 8649 | 8522 | 127 | 1.00000 | 1.00000 | 1.00000 |
T2D-panukb | 12 | 14 | 2460 | 2423 | 37 | 0.06063 | 0.05609 | 0.47765 |
SCZ-ieu-b-5102 | 37 | 15 | 3547 | 3511 | 36 | 1.00000 | 1.00000 | 1.00000 |
BIP-ieu-b-5110 | 1 | 9 | 2660 | 2622 | 38 | 1.00000 | 1.00000 | 1.00000 |
ASD-ieu-a-1185 | 4 | 0 | 107 | 103 | 4 | 1.00000 | 1.00000 | 1.00000 |
ADHD-ieu-a-1183 | 1 | 0 | 256 | 249 | 7 | 1.00000 | 1.00000 | 1.00000 |
PD-ieu-b-7 | 6 | 4 | 726 | 717 | 9 | 0.02717 | 0.02751 | 0.30769 |
NS-ukb-a-230 | 8 | 7 | 1201 | 1189 | 12 | 1.00000 | 1.00000 | 1.00000 |
MDD-ieu-b-102 | 22 | 0 | 799 | 796 | 3 | 1.00000 | 1.00000 | 1.00000 |
WBC-ieu-b-30 | 27 | 243 | 11369 | 11103 | 266 | 0.43541 | 0.44302 | 0.47741 |
df <- readRDS("/project/xinhe/xsun/multi_group_ctwas/25.multi_group_validation_classfier_0602/results/fisher_xgboost_binary/results_y_pred_xgboost_gene_score_bin_trunc1000_prob0.7_all.RDS")
df %>%
mutate(across(starts_with("pval_"),
~ifelse(. < 0.05,
cell_spec(sprintf("%.5f", .), color = "red"),
sprintf("%.5f", .)))) %>%
kable(escape = FALSE, format = "html",
caption = "Benchmark gene cutoff (XGboost prediction): 0.7, sigificant ones are highlighted") %>%
kable_styling(full_width = FALSE)
trait | num_benchmark_genes | num_gene_08p | num_gene_08m | num_gene_05m | num_gene_0508 | pval_08p08m | pval_08p05m | pval_08p0508 |
---|---|---|---|---|---|---|---|---|
LDL-ukb-d-30780_irnt | 25 | 73 | 5394 | 5321 | 73 | 0.00378 | 0.00347 | 0.61977 |
IBD-ebi-a-GCST004131 | 24 | 28 | 3749 | 3699 | 50 | 0.14502 | 0.14033 | 1.00000 |
aFib-ebi-a-GCST006414 | 5 | 53 | 3540 | 3489 | 51 | 0.04362 | 0.04423 | 1.00000 |
SBP-ukb-a-360 | 2 | 35 | 4909 | 4858 | 51 | 1.00000 | 1.00000 | 1.00000 |
T1D-GCST90014023 | 59 | 17 | 2855 | 2822 | 31 | 1.00000 | 1.00000 | 1.00000 |
Height-panukb | 15 | 208 | 13763 | 13584 | 179 | 1.00000 | 1.00000 | 1.00000 |
HTN-panukb | 8 | 42 | 5465 | 5400 | 65 | 1.00000 | 1.00000 | 1.00000 |
PLT-panukb | 19 | 119 | 10616 | 10471 | 145 | 1.00000 | 1.00000 | 1.00000 |
RA-panukb | 25 | 5 | 332 | 330 | 2 | 1.00000 | 1.00000 | 1.00000 |
RBC-panukb | 14 | 122 | 10154 | 9976 | 178 | 0.15407 | 0.15657 | 0.40667 |
ATH_gtexukb | 43 | 21 | 3276 | 3227 | 49 | 1.00000 | 1.00000 | 1.00000 |
BMI-panukb | 7 | 53 | 9215 | 9114 | 101 | 0.03383 | 0.02293 | 1.00000 |
HB-panukb | 58 | 90 | 8649 | 8522 | 127 | 0.16151 | 0.16369 | 0.41475 |
T2D-panukb | 7 | 14 | 2460 | 2423 | 37 | 0.03899 | 0.03957 | 0.27451 |
SCZ-ieu-b-5102 | 26 | 15 | 3547 | 3511 | 36 | 1.00000 | 1.00000 | 1.00000 |
BIP-ieu-b-5110 | 7 | 9 | 2660 | 2622 | 38 | 1.00000 | 1.00000 | 1.00000 |
ASD-ieu-a-1185 | 4 | 0 | 107 | 103 | 4 | 1.00000 | 1.00000 | 1.00000 |
ADHD-ieu-a-1183 | 1 | 0 | 256 | 249 | 7 | 1.00000 | 1.00000 | 1.00000 |
PD-ieu-b-7 | 3 | 4 | 726 | 717 | 9 | 0.01637 | 0.01657 | 0.30769 |
NS-ukb-a-230 | 12 | 7 | 1201 | 1189 | 12 | 1.00000 | 1.00000 | 1.00000 |
MDD-ieu-b-102 | 13 | 0 | 799 | 796 | 3 | 1.00000 | 1.00000 | 1.00000 |
WBC-ieu-b-30 | 22 | 243 | 11369 | 11103 | 266 | 1.00000 | 1.00000 | 0.50004 |
df <- readRDS("/project/xinhe/xsun/multi_group_ctwas/25.multi_group_validation_classfier_0602/results/fisher_xgboost_binary/results_y_pred_xgboost_gene_score_bin_trunc1000_prob0.8_all.RDS")
df %>%
mutate(across(starts_with("pval_"),
~ifelse(. < 0.05,
cell_spec(sprintf("%.5f", .), color = "red"),
sprintf("%.5f", .)))) %>%
kable(escape = FALSE, format = "html",
caption = "Benchmark gene cutoff (XGboost prediction): 0.8, sigificant ones are highlighted") %>%
kable_styling(full_width = FALSE)
trait | num_benchmark_genes | num_gene_08p | num_gene_08m | num_gene_05m | num_gene_0508 | pval_08p08m | pval_08p05m | pval_08p0508 |
---|---|---|---|---|---|---|---|---|
LDL-ukb-d-30780_irnt | 17 | 73 | 5394 | 5321 | 73 | 0.00136 | 0.00117 | 0.61977 |
IBD-ebi-a-GCST004131 | 12 | 28 | 3749 | 3699 | 50 | 0.07869 | 0.07971 | 0.35897 |
aFib-ebi-a-GCST006414 | 0 | 53 | 3540 | 3489 | 51 | 1.00000 | 1.00000 | 1.00000 |
SBP-ukb-a-360 | 0 | 35 | 4909 | 4858 | 51 | 1.00000 | 1.00000 | 1.00000 |
T1D-GCST90014023 | 22 | 17 | 2855 | 2822 | 31 | 1.00000 | 1.00000 | 1.00000 |
Height-panukb | 11 | 208 | 13763 | 13584 | 179 | 1.00000 | 1.00000 | 1.00000 |
HTN-panukb | 7 | 42 | 5465 | 5400 | 65 | 1.00000 | 1.00000 | 1.00000 |
PLT-panukb | 13 | 119 | 10616 | 10471 | 145 | 1.00000 | 1.00000 | 1.00000 |
RA-panukb | 23 | 5 | 332 | 330 | 2 | 1.00000 | 1.00000 | 1.00000 |
RBC-panukb | 11 | 122 | 10154 | 9976 | 178 | 1.00000 | 1.00000 | 1.00000 |
ATH_gtexukb | 27 | 21 | 3276 | 3227 | 49 | 1.00000 | 1.00000 | 1.00000 |
BMI-panukb | 1 | 53 | 9215 | 9114 | 101 | 1.00000 | 1.00000 | 1.00000 |
HB-panukb | 37 | 90 | 8649 | 8522 | 127 | 1.00000 | 1.00000 | 1.00000 |
T2D-panukb | 1 | 14 | 2460 | 2423 | 37 | 1.00000 | 1.00000 | 1.00000 |
SCZ-ieu-b-5102 | 22 | 15 | 3547 | 3511 | 36 | 1.00000 | 1.00000 | 1.00000 |
BIP-ieu-b-5110 | 0 | 9 | 2660 | 2622 | 38 | 1.00000 | 1.00000 | 1.00000 |
ASD-ieu-a-1185 | 1 | 0 | 107 | 103 | 4 | 1.00000 | 1.00000 | 1.00000 |
ADHD-ieu-a-1183 | 0 | 0 | 256 | 249 | 7 | 1.00000 | 1.00000 | 1.00000 |
PD-ieu-b-7 | 1 | 4 | 726 | 717 | 9 | 1.00000 | 1.00000 | 1.00000 |
NS-ukb-a-230 | 1 | 7 | 1201 | 1189 | 12 | 1.00000 | 1.00000 | 1.00000 |
MDD-ieu-b-102 | 1 | 0 | 799 | 796 | 3 | 1.00000 | 1.00000 | 1.00000 |
WBC-ieu-b-30 | 17 | 243 | 11369 | 11103 | 266 | 1.00000 | 1.00000 | 1.00000 |
df <- readRDS("/project/xinhe/xsun/multi_group_ctwas/25.multi_group_validation_classfier_0602/results/fisher_xgboost_zscore/results_zfdr0.05_all.RDS")
df %>%
mutate(across(starts_with("pval_"),
~ifelse(. < 0.05,
cell_spec(sprintf("%.5f", .), color = "red"),
sprintf("%.5f", .)))) %>%
kable(escape = FALSE, format = "html",
caption = "Benchmark gene cutoff (FDR 0.05); significant ones are highlighted") %>%
kable_styling(full_width = FALSE)
trait | num_benchmark_genes | num_gene_08p | num_gene_08m | num_gene_05m | num_gene_0508 | pval_08p08m | pval_08p05m | pval_08p0508 |
---|---|---|---|---|---|---|---|---|
LDL-ukb-d-30780_irnt | 84 | 73 | 5394 | 5321 | 73 | 0.00488 | 0.00328 | 0.74505 |
IBD-ebi-a-GCST004131 | 39 | 28 | 3749 | 3699 | 50 | 0.00010 | 0.00010 | 0.01435 |
aFib-ebi-a-GCST006414 | 8 | 53 | 3540 | 3489 | 51 | 0.00016 | 0.00011 | 0.61790 |
SBP-ukb-a-360 | 4 | 35 | 4909 | 4858 | 51 | 1.00000 | 1.00000 | 1.00000 |
T1D-GCST90014023 | 55 | 17 | 2855 | 2822 | 31 | 0.21267 | 0.20525 | 0.35417 |
Height-panukb | 17188 | 208 | 13763 | 13584 | 179 | 0.00084 | 0.00059 | 0.32667 |
HTN-panukb | 17 | 42 | 5465 | 5400 | 65 | 0.10862 | 0.10985 | 0.39252 |
PLT-panukb | 17038 | 119 | 10616 | 10471 | 145 | 0.20991 | 0.21024 | 0.63206 |
RA-panukb | 24 | 5 | 332 | 330 | 2 | 1.00000 | 1.00000 | 1.00000 |
RBC-panukb | 15965 | 122 | 10154 | 9976 | 178 | 0.05923 | 0.05969 | 0.83051 |
ATH_gtexukb | 45 | 21 | 3276 | 3227 | 49 | 0.00218 | 0.00227 | 0.02430 |
BMI-panukb | 16080 | 53 | 9215 | 9114 | 101 | 0.05838 | 0.05837 | 0.33237 |
HB-panukb | 170 | 90 | 8649 | 8522 | 127 | 0.01949 | 0.01726 | 1.00000 |
T2D-panukb | 10 | 14 | 2460 | 2423 | 37 | 0.05527 | 0.05061 | 0.47765 |
SCZ-ieu-b-5102 | 102 | 15 | 3547 | 3511 | 36 | 0.14524 | 0.13924 | 1.00000 |
BIP-ieu-b-5110 | 0 | 9 | 2660 | 2622 | 38 | 1.00000 | 1.00000 | 1.00000 |
ASD-ieu-a-1185 | 0 | 0 | 107 | 103 | 4 | 1.00000 | 1.00000 | 1.00000 |
ADHD-ieu-a-1183 | 0 | 0 | 256 | 249 | 7 | 1.00000 | 1.00000 | 1.00000 |
PD-ieu-b-7 | 3 | 4 | 726 | 717 | 9 | 0.01637 | 0.01657 | 0.30769 |
NS-ukb-a-230 | 2 | 7 | 1201 | 1189 | 12 | 1.00000 | 1.00000 | 1.00000 |
MDD-ieu-b-102 | 7 | 0 | 799 | 796 | 3 | 1.00000 | 1.00000 | 1.00000 |
WBC-ieu-b-30 | 16214 | 243 | 11369 | 11103 | 266 | 0.00178 | 0.00134 | 0.84747 |
df <- readRDS("/project/xinhe/xsun/multi_group_ctwas/25.multi_group_validation_classfier_0602/results/fisher_xgboost_zscore/results_zfdr0.1_all.RDS")
df %>%
mutate(across(starts_with("pval_"),
~ifelse(. < 0.05,
cell_spec(sprintf("%.5f", .), color = "red"),
sprintf("%.5f", .)))) %>%
kable(escape = FALSE, format = "html",
caption = "Benchmark gene cutoff FDR 0.1, sigificant ones are highlighted") %>%
kable_styling(full_width = FALSE)
trait | num_benchmark_genes | num_gene_08p | num_gene_08m | num_gene_05m | num_gene_0508 | pval_08p08m | pval_08p05m | pval_08p0508 |
---|---|---|---|---|---|---|---|---|
LDL-ukb-d-30780_irnt | 96 | 73 | 5394 | 5321 | 73 | 0.00090 | 0.00057 | 1.00000 |
IBD-ebi-a-GCST004131 | 40 | 28 | 3749 | 3699 | 50 | 0.00000 | 0.00000 | 0.00466 |
aFib-ebi-a-GCST006414 | 14 | 53 | 3540 | 3489 | 51 | 0.00003 | 0.00002 | 0.36316 |
SBP-ukb-a-360 | 5 | 35 | 4909 | 4858 | 51 | 1.00000 | 1.00000 | 1.00000 |
T1D-GCST90014023 | 77 | 17 | 2855 | 2822 | 31 | 0.22209 | 0.21008 | 1.00000 |
Height-panukb | 17228 | 208 | 13763 | 13584 | 179 | 0.00082 | 0.00083 | 0.32667 |
HTN-panukb | 24 | 42 | 5465 | 5400 | 65 | 0.15528 | 0.15041 | 1.00000 |
PLT-panukb | 17105 | 119 | 10616 | 10471 | 145 | 0.20888 | 0.20873 | 0.80531 |
RA-panukb | 24 | 5 | 332 | 330 | 2 | 1.00000 | 1.00000 | 1.00000 |
RBC-panukb | 16655 | 122 | 10154 | 9976 | 178 | 0.24331 | 0.24333 | 1.00000 |
ATH_gtexukb | 48 | 21 | 3276 | 3227 | 49 | 0.00266 | 0.00278 | 0.02430 |
BMI-panukb | 16569 | 53 | 9215 | 9114 | 101 | 0.16964 | 0.16995 | 0.49544 |
HB-panukb | 16127 | 90 | 8649 | 8522 | 127 | 0.00387 | 0.00261 | 0.52833 |
T2D-panukb | 11 | 14 | 2460 | 2423 | 37 | 0.06063 | 0.05609 | 0.47765 |
SCZ-ieu-b-5102 | 141 | 15 | 3547 | 3511 | 36 | 0.24179 | 0.23405 | 1.00000 |
BIP-ieu-b-5110 | 12 | 9 | 2660 | 2622 | 38 | 1.00000 | 1.00000 | 1.00000 |
ASD-ieu-a-1185 | 0 | 0 | 107 | 103 | 4 | 1.00000 | 1.00000 | 1.00000 |
ADHD-ieu-a-1183 | 0 | 0 | 256 | 249 | 7 | 1.00000 | 1.00000 | 1.00000 |
PD-ieu-b-7 | 5 | 4 | 726 | 717 | 9 | 0.00022 | 0.00023 | 0.07692 |
NS-ukb-a-230 | 2 | 7 | 1201 | 1189 | 12 | 1.00000 | 1.00000 | 1.00000 |
MDD-ieu-b-102 | 7 | 0 | 799 | 796 | 3 | 1.00000 | 1.00000 | 1.00000 |
WBC-ieu-b-30 | 17036 | 243 | 11369 | 11103 | 266 | 0.01266 | 0.00972 | 0.68641 |
df <- readRDS("/project/xinhe/xsun/multi_group_ctwas/25.multi_group_validation_classfier_0602/results/fisher_xgboost_zscore/results_zfdr0.2_all.RDS")
df %>%
mutate(across(starts_with("pval_"),
~ifelse(. < 0.05,
cell_spec(sprintf("%.5f", .), color = "red"),
sprintf("%.5f", .)))) %>%
kable(escape = FALSE, format = "html",
caption = "Benchmark gene cutoff FDR 0.2, sigificant ones are highlighted") %>%
kable_styling(full_width = FALSE)
trait | num_benchmark_genes | num_gene_08p | num_gene_08m | num_gene_05m | num_gene_0508 | pval_08p08m | pval_08p05m | pval_08p0508 |
---|---|---|---|---|---|---|---|---|
LDL-ukb-d-30780_irnt | 111 | 73 | 5394 | 5321 | 73 | 0.00164 | 0.00104 | 0.76457 |
IBD-ebi-a-GCST004131 | 46 | 28 | 3749 | 3699 | 50 | 0.00001 | 0.00001 | 0.00466 |
aFib-ebi-a-GCST006414 | 21 | 53 | 3540 | 3489 | 51 | 0.00000 | 0.00000 | 0.11275 |
SBP-ukb-a-360 | 5 | 35 | 4909 | 4858 | 51 | 1.00000 | 1.00000 | 1.00000 |
T1D-GCST90014023 | 114 | 17 | 2855 | 2822 | 31 | 0.27645 | 0.26585 | 1.00000 |
Height-panukb | 17289 | 208 | 13763 | 13584 | 179 | 0.00082 | 0.00082 | 0.32667 |
HTN-panukb | 31 | 42 | 5465 | 5400 | 65 | 0.19337 | 0.18917 | 1.00000 |
PLT-panukb | 17174 | 119 | 10616 | 10471 | 145 | 0.26397 | 0.26439 | 0.80531 |
RA-panukb | 26 | 5 | 332 | 330 | 2 | 1.00000 | 1.00000 | 1.00000 |
RBC-panukb | 17288 | 122 | 10154 | 9976 | 178 | 0.44575 | 0.44641 | 1.00000 |
ATH_gtexukb | 59 | 21 | 3276 | 3227 | 49 | 0.00320 | 0.00334 | 0.02430 |
BMI-panukb | 16882 | 53 | 9215 | 9114 | 101 | 0.16700 | 0.16695 | 0.49544 |
HB-panukb | 17123 | 90 | 8649 | 8522 | 127 | 0.02295 | 0.02310 | 0.73861 |
T2D-panukb | 11 | 14 | 2460 | 2423 | 37 | 0.06063 | 0.05609 | 0.47765 |
SCZ-ieu-b-5102 | 154 | 15 | 3547 | 3511 | 36 | 0.26745 | 0.25699 | 1.00000 |
BIP-ieu-b-5110 | 12 | 9 | 2660 | 2622 | 38 | 1.00000 | 1.00000 | 1.00000 |
ASD-ieu-a-1185 | 0 | 0 | 107 | 103 | 4 | 1.00000 | 1.00000 | 1.00000 |
ADHD-ieu-a-1183 | 0 | 0 | 256 | 249 | 7 | 1.00000 | 1.00000 | 1.00000 |
PD-ieu-b-7 | 5 | 4 | 726 | 717 | 9 | 0.00022 | 0.00023 | 0.07692 |
NS-ukb-a-230 | 3 | 7 | 1201 | 1189 | 12 | 1.00000 | 1.00000 | 1.00000 |
MDD-ieu-b-102 | 14 | 0 | 799 | 796 | 3 | 1.00000 | 1.00000 | 1.00000 |
WBC-ieu-b-30 | 17121 | 243 | 11369 | 11103 | 266 | 0.02078 | 0.01606 | 0.68641 |
sessionInfo()
R version 4.2.0 (2022-04-22)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)
Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so
locale:
[1] C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] forcats_0.5.1 stringr_1.5.1 dplyr_1.1.4 purrr_1.0.2
[5] readr_2.1.2 tidyr_1.3.0 tibble_3.2.1 ggplot2_3.5.1
[9] tidyverse_1.3.1 kableExtra_1.4.0
loaded via a namespace (and not attached):
[1] Rcpp_1.0.12 svglite_2.1.0 lubridate_1.8.0 assertthat_0.2.1
[5] rprojroot_2.0.3 digest_0.6.29 utf8_1.2.2 R6_2.5.1
[9] cellranger_1.1.0 backports_1.4.1 reprex_2.0.1 evaluate_0.15
[13] httr_1.4.3 pillar_1.9.0 rlang_1.1.2 readxl_1.4.0
[17] rstudioapi_0.13 jquerylib_0.1.4 rmarkdown_2.25 munsell_0.5.0
[21] broom_0.8.0 compiler_4.2.0 httpuv_1.6.5 modelr_0.1.8
[25] xfun_0.41 pkgconfig_2.0.3 systemfonts_1.0.4 htmltools_0.5.2
[29] tidyselect_1.2.0 workflowr_1.7.0 fansi_1.0.3 viridisLite_0.4.0
[33] crayon_1.5.1 tzdb_0.4.0 dbplyr_2.1.1 withr_2.5.0
[37] later_1.3.0 grid_4.2.0 jsonlite_1.8.0 gtable_0.3.0
[41] lifecycle_1.0.4 DBI_1.2.2 git2r_0.30.1 magrittr_2.0.3
[45] scales_1.3.0 cli_3.6.1 stringi_1.7.6 fs_1.5.2
[49] promises_1.2.0.1 xml2_1.3.3 bslib_0.3.1 ellipsis_0.3.2
[53] generics_0.1.2 vctrs_0.6.5 tools_4.2.0 glue_1.6.2
[57] hms_1.1.1 fastmap_1.1.0 yaml_2.3.5 colorspace_2.0-3
[61] rvest_1.0.2 knitr_1.39 haven_2.5.0 sass_0.4.1