Last updated: 2025-06-05
Checks: 6 1
Knit directory: multigroup_ctwas_analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown file has unstaged changes. To know which version of
the R Markdown file created these results, you’ll want to first commit
it to the Git repo. If you’re still working on the analysis, you can
ignore this warning. When you’re finished, you can run
wflow_publish
to commit the R Markdown file and build the
HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20231112)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 612a153. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .Rhistory
Ignored: cv/
Ignored: figures/lz/ADHD-ieu-a-1183/
Ignored: figures/lz/ASD-ieu-a-1185/
Ignored: figures/lz/IBD-ebi-a-GCST004131/single/
Ignored: figures/lz/MDD-ieu-b-102/single/
Ignored: figures/lz/PD-ieu-b-7/single/
Ignored: figures/lz/RA-panukb/single/
Untracked files:
Untracked: analysis/realdata_final_multigroup_examine_results_3qtls.Rmd
Unstaged changes:
Modified: analysis/realdata_final_multigroup_summary_3qtls.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown
(analysis/realdata_final_multigroup_summary_3qtls.Rmd
) and
HTML (docs/realdata_final_multigroup_summary_3qtls.html
)
files. If you’ve configured a remote Git repository (see
?wflow_git_remote
), click on the hyperlinks in the table
below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 612a153 | XSun | 2025-06-04 | update |
html | 612a153 | XSun | 2025-06-04 | update |
Rmd | 4f9814a | XSun | 2025-06-04 | update |
html | 4f9814a | XSun | 2025-06-04 | update |
Rmd | 00be92f | XSun | 2025-06-03 | update |
This is a summary for tissues selected here: https://sq-96.github.io/multigroup_ctwas_analysis/realdata_final_tissueselection_mingene0_splicing_exclude_brainprocessed.html
library(ctwas)
source("/project/xinhe/xsun/multi_group_ctwas/functions/0.functions.R")
source("/project/xinhe/xsun/multi_group_ctwas/data/samplesize.R")
trait_nopsy <- c("LDL-ukb-d-30780_irnt","IBD-ebi-a-GCST004131","aFib-ebi-a-GCST006414","SBP-ukb-a-360",
"T1D-GCST90014023","T2D-panukb","ATH_gtexukb","BMI-panukb","HB-panukb",
"Height-panukb","HTN-panukb","PLT-panukb","RA-panukb","RBC-panukb",
"WBC-ieu-b-30"
)
trait_psy <- c("SCZ-ieu-b-5102","ASD-ieu-a-1185","BIP-ieu-b-5110","MDD-ieu-b-102","PD-ieu-b-7",
"ADHD-ieu-a-1183","NS-ukb-a-230")
traits <- c(trait_nopsy,trait_psy)
colors <- c("#ff7f0e", "#2ca02c", "#d62728", "#9467bd", "#8c564b", "#e377c2", "#7f7f7f", "#bcbd22", "#17becf", "#f7b6d2", "#c5b0d5", "#9edae5", "#ffbb78", "#98df8a", "#ff9896" )
folder_results_single <- "/project/xinhe/xsun/multi_group_ctwas/22.singlegroup_0515/ctwas_output/expression/"
folder_results_multi <- "/project/xinhe/xsun/multi_group_ctwas/23.multi_group_0515/snakemake_outputs/"
generate_piecharts_for_trait <- function(title_top = NULL, colors = NULL) {
if(is.null(colors)) {
colors <- c("#ff7f0e", "#2ca02c", "#d62728", "#9467bd", "#8c564b", "#e377c2", "#7f7f7f", "#bcbd22", "#17becf", "#f7b6d2", "#c5b0d5", "#9edae5", "#ffbb78", "#98df8a", "#ff9896" )
}
pie_eqtl_single <- plot_piechart_single(ctwas_parameters_single, colors, by = "type", title = NULL)
pie_eqtl_multi_type <- plot_piechart_topn(ctwas_parameters_multi, colors, by = "type", title = NULL)
pie_eqtl_multi_context <- plot_piechart_topn(ctwas_parameters_multi, colors, by = "context", title = NULL, n_tissue = 10)
# Function to fix panel size
fix_panel_size <- function(plot, width = 2.1, height = 2) {
set_panel_size(plot, width = unit(width, "in"), height = unit(height, "in"))
}
# Apply fixed panel size
pie1 <- fix_panel_size(pie_eqtl_single)
pie2 <- fix_panel_size(pie_eqtl_multi_type)
pie3 <- fix_panel_size(pie_eqtl_multi_context)
# Compute natural widths
widths <- unit.c(grobWidth(pie1), grobWidth(pie2), grobWidth(pie3))
# Arrange
p <- grid.arrange(pie1, pie2, pie3,
ncol = 3,
widths = widths,
top = title_top)
return(p)
}
plot_overlap_barplot <- function(combined_pip_by_group_multi,
combined_pip_by_group_single,
PIP_cutoff = 0.8,
tissue,
trait,
return_unique_genes = FALSE) {
# Filter genes by PIP cutoff
combined_pip_by_group_sig_multi <- combined_pip_by_group_multi[combined_pip_by_group_multi$combined_pip > PIP_cutoff, ]
combined_pip_by_group_sig_single <- combined_pip_by_group_single[combined_pip_by_group_single$combined_pip > PIP_cutoff, ]
# Extract gene names
multi_genes <- combined_pip_by_group_sig_multi$gene_name
single_genes <- combined_pip_by_group_sig_single$gene_name
# Compute overlap
overlap_genes <- intersect(multi_genes, single_genes)
single_genes_unique <- setdiff(single_genes, overlap_genes)
n_overlap <- length(overlap_genes)
n_multi <- length(multi_genes)
n_single <- length(single_genes)
# Construct data frame for plotting
df <- data.frame(
group = rep(c("Multi-group", paste0("Single-eQTL - \n", tissue)), each = 2),
part = rep(c("Overlap", "Unique"), 2),
count = c(n_overlap, n_multi - n_overlap, n_overlap, n_single - n_overlap)
)
# Ensure proper stacking order
df$part <- factor(df$part, levels = c("Unique", "Overlap"))
# Plot
p <- ggplot(df, aes(x = group, y = count, fill = part)) +
geom_bar(stat = "identity", width = 0.6) +
geom_text(aes(label = count), position = position_stack(vjust = 0.5), color = "white", size = 5) +
scale_fill_manual(values = c("Overlap" = "#1f77b4", "Unique" = "#ff7f0e")) +
labs(
x = "",
y = paste0("Number of Genes at PIP > ", PIP_cutoff),
title = trait,
fill = ""
) +
theme_minimal(base_size = 14)
if (return_unique_genes) {
return(list(plot = p, single_genes_unique = single_genes_unique))
} else {
return(p)
}
}
get_top_tissue <- function(group_pve) {
# Remove QTL type to extract tissue names
group_pve <- group_pve[-which(names(group_pve) =="SNP")]
tissue_names <- sub("\\|.*", "", names(group_pve))
# Sum PVE values across tissues
tissue_pve <- tapply(group_pve, tissue_names, sum)
# Return the tissue name with the highest total PVE
top_tissue <- names(which.max(tissue_pve))
return(top_tissue)
}
for (trait in traits){
cat("\n")
cat(trait)
cat("\n")
## parameters
gwas_n <- samplesize[trait]
param_multi <- readRDS(paste0(folder_results_multi,trait,"/",trait,".3qtls.thin1.shared_all.param.RDS"))
ctwas_parameters_multi <- summarize_param(param = param_multi,gwas_n = gwas_n)
top_tissue <- get_top_tissue(ctwas_parameters_multi$group_pve)
param_single <- readRDS(paste0(folder_results_single, trait, "/", trait, "_", top_tissue, ".thin1.shared_all.param.RDS"))
ctwas_parameters_single <- summarize_param(param_single, gwas_n)
title <- paste0(trait, ", top tissue: ", top_tissue)
grid.newpage()
print(generate_piecharts_for_trait(title_top = title))
## Overlap
PIP_cutoff <- 0.8
combined_pip_by_group_single <- readRDS(paste0(folder_results_single, trait, "/", trait, "_", top_tissue, ".combined_pip_bygroup_final.RDS"))
combined_pip_by_group_multi <- readRDS(paste0(folder_results_multi,trait,"/",trait,".3qtls.combined_pip_bygroup_final.RDS"))
grid.newpage()
print(plot_overlap_barplot(combined_pip_by_group_multi = combined_pip_by_group_multi, combined_pip_by_group_single = combined_pip_by_group_single,PIP_cutoff = PIP_cutoff,tissue = top_tissue,trait = trait,return_unique_genes = T))
## heatmaps
combined_pip_by_group_multi_sig <- combined_pip_by_group_multi[combined_pip_by_group_multi$combined_pip > PIP_cutoff,]
combined_pip_by_group_single_sig <- combined_pip_by_group_single[combined_pip_by_group_single$combined_pip > PIP_cutoff,]
combined_pip_by_group_multi_unique <- combined_pip_by_group_multi_sig[!combined_pip_by_group_multi_sig$gene_name %in% combined_pip_by_group_single_sig$gene_name, ]
grid.newpage()
if(nrow(combined_pip_by_group_multi_unique) > 0) {
print(plot_heatmap(heatmap_data = combined_pip_by_group_multi_unique, main = paste0("New genes identified by multigroup analysis, PIP>",PIP_cutoff),showPIP = T))
}
print(paste0("Unique genes from multigroup: ", paste0(combined_pip_by_group_multi_unique$gene_name, collapse = ", ")))
}
LDL-ukb-d-30780_irnt
TableGrob (2 x 3) "arrange": 4 grobs
z cells name grob
1 1 (2-2,1-1) arrange gtable[layout]
2 2 (2-2,2-2) arrange gtable[layout]
3 3 (2-2,3-3) arrange gtable[layout]
4 4 (1-1,1-3) arrange text[GRID.text.157]
$plot
$single_genes_unique
[1] "PARP9" "DDX56" "MZF1" "CLDN23" "FUT2" "VIL1" "KLHDC7A"
[8] "WBP1L"
[1] "Unique genes from multigroup: LDLR, PCSK9, CETP, CCNJ, PKN3, ABCA8, FCGRT, DNAJC13, LRCH4, HMGCR, ASGR1, APOB, ADH1B, FLT3, ZDHHC18, USP39, TIMD4, ZFYVE1, ACP6, NPC1L1, ERGIC3, MITF, PSRC1, SNX17, GABBR1, HMGN1, KIF13B, R3HDM2, MYPOP, SIPA1, USP3, PGS1, FAM117B, ADRB1, PHC1, WASHC4, TPD52, THOP1, ZFP28, DMTN, PDE4C, XPNPEP3"
IBD-ebi-a-GCST004131
TableGrob (2 x 3) "arrange": 4 grobs
z cells name grob
1 1 (2-2,1-1) arrange gtable[layout]
2 2 (2-2,2-2) arrange gtable[layout]
3 3 (2-2,3-3) arrange gtable[layout]
4 4 (1-1,1-3) arrange text[GRID.text.372]
$plot
$single_genes_unique
character(0)
[1] "Unique genes from multigroup: HLA-DQB1, BRD7, PTPN2, FOSL2, ERI3, CD244, ADAM15, TNFRSF6B, IP6K2, FCGR2A, SBNO2, GPR35, SMAD3, MAST2, ACBD3, STAT3, CASC3, RORC, RGS14, ATG16L1, AUH"
aFib-ebi-a-GCST006414
TableGrob (2 x 3) "arrange": 4 grobs
z cells name grob
1 1 (2-2,1-1) arrange gtable[layout]
2 2 (2-2,2-2) arrange gtable[layout]
3 3 (2-2,3-3) arrange gtable[layout]
4 4 (1-1,1-3) arrange text[GRID.text.578]
$plot
$single_genes_unique
[1] "DLEU1" "DEK" "MTSS1" "C5orf47"
[1] "Unique genes from multigroup: PRRX1, PCM1, PLEC, GMCL1, SCMH1, NACA, RBMS1, NCOR2, KCNH2, DNAJC12, RBM20, LRRC10, RUFY3, MYO18B, SSPN, PALMD, CAMK2D, XPO7, CCNB1IP1, CCT2, MICAL3, FLNC, AHSA2, CFL2, C21orf2, VPS13A, DDX17, SF3B1"
SBP-ukb-a-360
TableGrob (2 x 3) "arrange": 4 grobs
z cells name grob
1 1 (2-2,1-1) arrange gtable[layout]
2 2 (2-2,2-2) arrange gtable[layout]
3 3 (2-2,3-3) arrange gtable[layout]
4 4 (1-1,1-3) arrange text[GRID.text.779]
$plot
$single_genes_unique
[1] "ZNF467" "HFE" "SHISA8" "SHBG" "PLK2"
[1] "Unique genes from multigroup: BAG6, PKN2, PKP4, ENPEP, FES, RERE, NUDT5, RAB34, SLC9A3R2, TMBIM1, HOXA11, DMWD, UVSSA, TMEM175, MTMR9, ADH1B, SP140L, PPP3R1, NAA60, CCDC163, FHOD3, SGSM3, NPR1, PAQR5, CLCN6, THAP3, CAMK1D, TBX2, FBXO38, REXO1"
T1D-GCST90014023
TableGrob (2 x 3) "arrange": 4 grobs
z cells name grob
1 1 (2-2,1-1) arrange gtable[layout]
2 2 (2-2,2-2) arrange gtable[layout]
3 3 (2-2,3-3) arrange gtable[layout]
4 4 (1-1,1-3) arrange text[GRID.text.983]
$plot
$single_genes_unique
[1] "ELMO3"
[1] "Unique genes from multigroup: C1QTNF6, CAMK4, PLEKHM1, CCDC88B, PGM1, ZMYND8, SLC11A1, PRCC, BATF3, RASGRP1, VSIR"
T2D-panukb
TableGrob (2 x 3) "arrange": 4 grobs
z cells name grob
1 1 (2-2,1-1) arrange gtable[layout]
2 2 (2-2,2-2) arrange gtable[layout]
3 3 (2-2,3-3) arrange gtable[layout]
4 4 (1-1,1-3) arrange text[GRID.text.1192]
$plot
$single_genes_unique
[1] "CDKN1C" "JAZF1"
[1] "Unique genes from multigroup: RREB1, PRKRIP1, ENHO, HLA-DRB5, AP3S2, CEP68, EMC1, CAMK1D"
ATH_gtexukb
TableGrob (2 x 3) "arrange": 4 grobs
z cells name grob
1 1 (2-2,1-1) arrange gtable[layout]
2 2 (2-2,2-2) arrange gtable[layout]
3 3 (2-2,3-3) arrange gtable[layout]
4 4 (1-1,1-3) arrange text[GRID.text.1402]
$plot
$single_genes_unique
[1] "ZDHHC24" "CEP95"
[1] "Unique genes from multigroup: GSDMB, IL21R, RNF219, NPNT, TRAPPC2L, AHI1, MRVI1, IL4R, SERPINB7, DCAF1, RAD50, SEPT8, ELP2, INPP5B"
BMI-panukb
TableGrob (2 x 3) "arrange": 4 grobs
z cells name grob
1 1 (2-2,1-1) arrange gtable[layout]
2 2 (2-2,2-2) arrange gtable[layout]
3 3 (2-2,3-3) arrange gtable[layout]
4 4 (1-1,1-3) arrange text[GRID.text.1608]
$plot
$single_genes_unique
[1] "PSORS1C1" "MAPK11" "OSBPL3" "ENHO" "C1QTNF4" "FAM231B" "DLG4"
[1] "Unique genes from multigroup: MFSD13A, NEGR1, AGAP3, PDIA2, PTOV1, NASP, ADGRB2, GALNT4, ENTPD6, CTBP2, NPY5R, REXO1, RNF187, EEF1A2, PRPF6, FLT3, SNRNP70, CDHR3, ACP7, EI24, TP53, ADH1B, GPR61, PRMT2, MEST, KHSRP, ECE2, KCNC4, ANAPC4, DENND1A, RSPO3, PIK3C3, SLIT1, RALY, EPHA4, PATJ, ATP13A2, R3HDM1, PPM1A"
HB-panukb
TableGrob (2 x 3) "arrange": 4 grobs
z cells name grob
1 1 (2-2,1-1) arrange gtable[layout]
2 2 (2-2,2-2) arrange gtable[layout]
3 3 (2-2,3-3) arrange gtable[layout]
4 4 (1-1,1-3) arrange text[GRID.text.1817]
$plot
$single_genes_unique
[1] "MKRN2OS" "ENTPD6" "KIFC2" "PPP5C" "CCND2" "SH3GL1" "PLA2G6"
[1] "Unique genes from multigroup: FCGRT, FCGR2A, CD36, ACVRL1, EMC10, FAM35A, MKRN2, CAT, PARP6, MAST2, ABHD12, ZMIZ2, REEP3, NOSIP, RGS14, ZNF589, LTBP4, SRSF4, CYP21A2, GMPR, RAB34, FEM1B, TBK1, TMEM176A, RAB8A, DAZAP1, TNPO1, FAM193B, SUMF1, ANKRD9, SLC9A3R2, ASPSCR1, PSMB9, TTC13, HGFAC, TNK2, TOR1B, HLF, GSTM4, TNFAIP8L3, CSF1, TMPRSS6, NT5DC1, EXOC3L2, PPP1R36, LIPA, ZNF384, PAFAH1B3, FBF1, POLI, C11orf84, SLC16A9, APOL3, HOXA7, BET1L, HDDC2, GPRC5A, NOTCH1, HBS1L, ZBTB38, UGT8, OPLAH, CCDC92, PC, BAHCC1, RIPK3, CDK7, ACVR1B, EFHC1, VEGFB, NECAP2, PFKM, NNT, SMG9"
Height-panukb
TableGrob (2 x 3) "arrange": 4 grobs
z cells name grob
1 1 (2-2,1-1) arrange gtable[layout]
2 2 (2-2,2-2) arrange gtable[layout]
3 3 (2-2,3-3) arrange gtable[layout]
4 4 (1-1,1-3) arrange text[GRID.text.2019]
$plot
$single_genes_unique
[1] "RGP1" "ACHE" "SRSF12" "DVL3" "SPHK2"
[6] "PSMB9" "TOPORS-AS1" "UTP11" "MYLK4"
[1] "Unique genes from multigroup: CD79B, PTH1R, HOMEZ, GNA12, TRIM41, DCAKD, HTR1F, FBLN5, RINT1, CDO1, RAB34, STAT6, CEP192, ACP1, BCS1L, SUPT3H, GALNT5, BRICD5, DBNL, TMEM8B, FHOD3, SCMH1, P2RX4, CBX2, PLAG1, UVSSA, GGPS1, TLE1, LRRC29, TRIM6, CNIH4, SSBP4, PIGC, LMF1, C2orf40, NOS3, IL11RA, GLT8D2, ASPH, CNDP2, HECTD1, SMAD3, KIAA1614, NUP37, MLF2, GDPD3, SPIN1, PPP2R5C, ABCC8, UBE2Q1, SF3A2, ODF2L, USP47, PCSK5, ZCCHC3, ANKS3, DNAJC5G, CRELD1, DKK3, SLC9A1, BAMBI, SLC22A3, CDK11A, ZNF565, ELN, HMGN1, ZC3H13, YAP1, ACTR1B, SRCAP, HYOU1, FBXW8, RFT1, EDEM3, SLC25A30, ITPK1, ZZEF1, ZBTB38, SPSB1, MAP2K2, RCN1, FAM114A1, AKR1C2, FAN1, MCTP2, ZNF438, DCUN1D5, SMCHD1, MYPN, ABHD15, TNS2, MYO7A, CHD1L, EXOSC9, PITRM1, SEL1L, FGFR3, TTLL6, ZNF680, MSRB3, RALGAPA2, FAM134B, MXD4, CKB, DAAM2, PARP12, TPRG1L, CCND3, ZNF484, RBCK1, TRPS1, ARHGAP24, ARL15, EIF3C, ARSJ, GSDMC, NCR3LG1, ZMIZ2, SLC25A32, SEC23IP, ZBP1, FUBP3, KCNJ12, RDH10, VAMP5, LUC7L2, ATP10D, RPS6KA4, PAPD4, RREB1, SAMD4A, CTU2, VMAC, SLC48A1, CCDC57, RPS9, MORC3, SOCS1, FN3KRP, UST, EMC9, SERPINH1, MPHOSPH6, MMAB, PSMF1, HNRNPC, ATP1B3, GATAD2A, ASPSCR1, SERPINF1, CREB3L2"
HTN-panukb
TableGrob (2 x 3) "arrange": 4 grobs
z cells name grob
1 1 (2-2,1-1) arrange gtable[layout]
2 2 (2-2,2-2) arrange gtable[layout]
3 3 (2-2,3-3) arrange gtable[layout]
4 4 (1-1,1-3) arrange text[GRID.text.2227]
$plot
$single_genes_unique
[1] "TAPBP"
[1] "Unique genes from multigroup: FES, PRRT1, EFS, RIN1, TMEM133, SEPT9, FBXO10, ADH1B, FAM212A, CLCN6, CEP170, TCF21, LRRC10B, PIP4K2B, ATP10A, CEP68, GUCY1A3, COLGALT2, CTSF, SLCO3A1, ITGB5, NFRKB, TYMS, CLN8, NAA38, OAF, NMT1, SHISA4, SFXN4, MRAS"
PLT-panukb
TableGrob (2 x 3) "arrange": 4 grobs
z cells name grob
1 1 (2-2,1-1) arrange gtable[layout]
2 2 (2-2,2-2) arrange gtable[layout]
3 3 (2-2,3-3) arrange gtable[layout]
4 4 (1-1,1-3) arrange text[GRID.text.2425]
$plot
$single_genes_unique
[1] "WBP2" "TRABD" "HPR" "HNRNPUL1" "JADE2"
[1] "Unique genes from multigroup: CYB5A, FBXO34, CD151, THEMIS2, CRELD2, ARL17B, ARHGEF12, CCDC97, ANPEP, RTEL1, CBL, DFFB, SIRT5, RAB8A, SATB1, ZMIZ2, FARP2, ACVR1C, SEMA3F, TRDMT1, PLCG2, SEPT10, GSTP1, TFR2, FAM120B, LRCH4, MFN2, KIAA1109, ZNF385A, CAND2, REPS1, RAC2, ARIH2, CCDC38, PCIF1, AAMDC, SLC43A3, PRR5L, TRAM2, ALLC, PPP2R5C, ERN1, MAMDC2, DNTTIP2, MORC2, ARHGAP15, ARHGAP45, DLEU1, MFN1, PROSER2, PHF7, IL27, TNPO1, AHR, MS4A7, KMT5C, ARPC2, ZC3HC1, COL11A2, ZNF318, MAPKAP1, ZDHHC18, YWHAZ, C2CD2, HSD17B13, CDCA7L, POR, CFLAR, SYTL1, PDLIM2, SH3D21, TCTEX1D2"
RA-panukb
TableGrob (2 x 3) "arrange": 4 grobs
z cells name grob
1 1 (2-2,1-1) arrange gtable[layout]
2 2 (2-2,2-2) arrange gtable[layout]
3 3 (2-2,3-3) arrange gtable[layout]
4 4 (1-1,1-3) arrange text[GRID.text.2616]
$plot
$single_genes_unique
character(0)
[1] "Unique genes from multigroup: KIFC1, ASIC3, ITPR3, COL6A3"
RBC-panukb
TableGrob (2 x 3) "arrange": 4 grobs
z cells name grob
1 1 (2-2,1-1) arrange gtable[layout]
2 2 (2-2,2-2) arrange gtable[layout]
3 3 (2-2,3-3) arrange gtable[layout]
4 4 (1-1,1-3) arrange text[GRID.text.2822]
$plot
$single_genes_unique
[1] "HLA-E" "LRRC37A" "BST1" "ESRRB" "JMJD1C" "PPP1R26" "H1F0"
[8] "PTPA" "MAPK3" "ZNF629"
[1] "Unique genes from multigroup: HIST1H2AC, CD36, UBE2Q2, FCGRT, PARP6, CNIH4, LRCH4, INTS14, EHBP1L1, NOSIP, ABHD12, TFRC, NFE2L1, OSER1, TP53, RTEL1, SRSF4, RGS14, FES, ACSM5, ZMIZ2, MAP2K2, CAT, ROCK1, TAL1, HOXD11, XPC, ADH1B, FHL3, FEM1B, PPP1R21, EDN1, SPPL2A, RAB34, FADS1, POLR2H, CCDC92, PIK3R3, TLE3, PSMB5, FAM200B, TNFRSF10B, ANKRD36C, ELOVL3, PRR5L, RYBP, TST, KANSL1, PCGF3, PARN, TYMS, VLDLR, DAP3, ADSL, TAF8, MN1, PFKM, GPATCH2L, ZFP36L2, SLC9A3R2, ITSN1, TFR2, BAHCC1, ZBTB7A, TRPS1, EXOC3L2, NUDT2, WDR41, PTEN, NPRL3, SLX4IP, ZNF106, ABCC1, MARCH2, DOK1, TMC4, GLCE, RB1, VRK2, HLF, DAZAP1, ZBTB38, PBRM1, CD22, TTC13, CCND3, EMP2, SRPRB, ACTR2, C6orf52, GOSR1, CRNN, RIPK3, SLC25A32, XAF1, ZNF236, METRNL, CFLAR, COL4A2, UFC1, UGT8"
WBC-ieu-b-30
TableGrob (2 x 3) "arrange": 4 grobs
z cells name grob
1 1 (2-2,1-1) arrange gtable[layout]
2 2 (2-2,2-2) arrange gtable[layout]
3 3 (2-2,3-3) arrange gtable[layout]
4 4 (1-1,1-3) arrange text[GRID.text.3040]
$plot
$single_genes_unique
[1] "LSP1" "FCER1G" "ACAP1" "APOBR" "RNF181" "FOXJ2" "GPN2" "KCNN4"
[9] "TIMM50" "BAK1" "TPST1" "JMJD6" "ABI3" "MARK2" "PSMD2"
[1] "Unique genes from multigroup: CSF3R, HLA-C, MED24, GSDMB, REST, S1PR2, CCDC125, SLX4IP, NOSTRIN, CNN2, RAB2A, ITSN2, PTPRA, CLEC4M, MFSD13A, RAB34, MICALL2, HSF2, GSDMD, BAX, FAM120B, LYZ, MARCH7, PPP5C, CSF1, HDHD5, CXCL6, KIAA1614, SPAAR, DPP4, ACVR1B, ARHGEF25, OPTN, RBPMS, RHBDD3, TSPAN32, MYL5, SLC25A24, BEND7, ZNF30, CD33, MYH10, HSPA4, CABLES1, MAP3K5, MIGA2, TMC4, MYO1G, CERS4, WWOX, LSM4, SLC41A1, SAE1, GPR157, CEP83, SEC31A, ARHGAP45, RPN1, COTL1, BCL2L2, PDLIM2, RAPGEF3, S1PR1, EMILIN3, KIAA1755, SIGLEC14, CD36, PSD4, INPP5D, MICAL3, ADAM32, PKD1, EFHC1, BICD2, MBNL1, IGDCC4, NINJ2, IL17RA, PARP12, CD200R1, MKRN2, AP1M1, CTSC, FLT3LG, RBM38, FN1, CACNA1H, POMT1, CARS2, LIMS2, ATP11A, TP53, ATL2, SEC22A, ZNF320, PLCG2, CD300A, FYCO1, TSPAN14, ABCC5, SUSD1, CSGALNACT1, ANKRD44, SMAP1, ZNF713, MAP3K10, CTDSPL, CD226, CAPZB, LRBA, PRR16, UPP1, SBNO2, IP6K2, SCD, ZC3H12D, TRAP1, ZFP1, IL16, CEPT1, DDX58, TET2, CCDC82, DLG5, VPS16, RNF139, GBAS, PAPSS1, ACKR2, VSIR, DTNB, ITGB2, CREB3L3, ARHGAP31, GOLGA5, SNX32, AKAP11, GADD45G, ZC3HC1, RAB5C, EIF4E2, TBC1D10C, TBX2, NPAS2, IRF5, WDR86, IFNAR1, SLC45A4, ZNF461, FBXO38, WDFY2, ANKRD11, DEFB1, HOXC6, NOC3L, CXCL12, RAP1GAP2, UGDH, FIGNL1, GIPC1, B4GALT3, NUDT14, SLC39A9, MAP3K7CL, LPP, RRP12, HNRNPK, NCF2, ACKR3, SPATA6L, STXBP3, TM7SF3, IFIH1, MANBA, ELMO1, OAS1, HSD17B13, FAM45A"
SCZ-ieu-b-5102
TableGrob (2 x 3) "arrange": 4 grobs
z cells name grob
1 1 (2-2,1-1) arrange gtable[layout]
2 2 (2-2,2-2) arrange gtable[layout]
3 3 (2-2,3-3) arrange gtable[layout]
4 4 (1-1,1-3) arrange text[GRID.text.3236]
$plot
$single_genes_unique
[1] "HLA-DMB" "KLHL20" "DRD2" "LY6H" "TRMT2A" "MLF2" "C11orf80"
[8] "PUF60"
[1] "Unique genes from multigroup: SOHLH1, MRPS33, R3HDM2, LPCAT4, ACE, TRPV4, C4B"
ASD-ieu-a-1185
TableGrob (2 x 3) "arrange": 4 grobs
z cells name grob
1 1 (2-2,1-1) arrange gtable[layout]
2 2 (2-2,2-2) arrange gtable[layout]
3 3 (2-2,3-3) arrange gtable[layout]
4 4 (1-1,1-3) arrange text[GRID.text.3430]
$plot
$single_genes_unique
character(0)
[1] "Unique genes from multigroup: "
BIP-ieu-b-5110
TableGrob (2 x 3) "arrange": 4 grobs
z cells name grob
1 1 (2-2,1-1) arrange gtable[layout]
2 2 (2-2,2-2) arrange gtable[layout]
3 3 (2-2,3-3) arrange gtable[layout]
4 4 (1-1,1-3) arrange text[GRID.text.3615]
$plot
$single_genes_unique
[1] "ZDHHC2"
[1] "Unique genes from multigroup: BLOC1S2, EFL1, KIAA1109, GHITM, HTR6, PTDSS1, CNNM4"
MDD-ieu-b-102
TableGrob (2 x 3) "arrange": 4 grobs
z cells name grob
1 1 (2-2,1-1) arrange gtable[layout]
2 2 (2-2,2-2) arrange gtable[layout]
3 3 (2-2,3-3) arrange gtable[layout]
4 4 (1-1,1-3) arrange text[GRID.text.3807]
$plot
$single_genes_unique
character(0)
[1] "Unique genes from multigroup: "
PD-ieu-b-7
TableGrob (2 x 3) "arrange": 4 grobs
z cells name grob
1 1 (2-2,1-1) arrange gtable[layout]
2 2 (2-2,2-2) arrange gtable[layout]
3 3 (2-2,3-3) arrange gtable[layout]
4 4 (1-1,1-3) arrange text[GRID.text.3991]
$plot
$single_genes_unique
character(0)
[1] "Unique genes from multigroup: CDHR3, ARSA"
ADHD-ieu-a-1183
TableGrob (2 x 3) "arrange": 4 grobs
z cells name grob
1 1 (2-2,1-1) arrange gtable[layout]
2 2 (2-2,2-2) arrange gtable[layout]
3 3 (2-2,3-3) arrange gtable[layout]
4 4 (1-1,1-3) arrange text[GRID.text.4179]
$plot
$single_genes_unique
character(0)
[1] "Unique genes from multigroup: "
NS-ukb-a-230
Version | Author | Date |
---|---|---|
612a153 | XSun | 2025-06-04 |
TableGrob (2 x 3) "arrange": 4 grobs
z cells name grob
1 1 (2-2,1-1) arrange gtable[layout]
2 2 (2-2,2-2) arrange gtable[layout]
3 3 (2-2,3-3) arrange gtable[layout]
4 4 (1-1,1-3) arrange text[GRID.text.4350]
$plot
Version | Author | Date |
---|---|---|
612a153 | XSun | 2025-06-04 |
$single_genes_unique
[1] "THRA"
Version | Author | Date |
---|---|---|
612a153 | XSun | 2025-06-04 |
[1] "Unique genes from multigroup: C12orf49"
sessionInfo()
R version 4.2.0 (2022-04-22)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)
Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so
locale:
[1] C
attached base packages:
[1] grid stats graphics grDevices utils datasets methods
[8] base
other attached packages:
[1] egg_0.4.5 gridExtra_2.3 ggrepel_0.9.1 dplyr_1.1.4
[5] ggplot2_3.5.1 pheatmap_1.0.12 ctwas_0.5.21
loaded via a namespace (and not attached):
[1] colorspace_2.0-3 rjson_0.2.21
[3] ellipsis_0.3.2 rprojroot_2.0.3
[5] XVector_0.36.0 locuszoomr_0.2.1
[7] GenomicRanges_1.48.0 base64enc_0.1-3
[9] fs_1.5.2 rstudioapi_0.13
[11] farver_2.1.0 bit64_4.0.5
[13] AnnotationDbi_1.58.0 fansi_1.0.3
[15] xml2_1.3.3 codetools_0.2-18
[17] logging_0.10-108 cachem_1.0.6
[19] knitr_1.39 jsonlite_1.8.0
[21] workflowr_1.7.0 Rsamtools_2.12.0
[23] dbplyr_2.1.1 png_0.1-7
[25] readr_2.1.2 compiler_4.2.0
[27] httr_1.4.3 assertthat_0.2.1
[29] Matrix_1.5-3 fastmap_1.1.0
[31] lazyeval_0.2.2 cli_3.6.1
[33] later_1.3.0 htmltools_0.5.2
[35] prettyunits_1.1.1 tools_4.2.0
[37] gtable_0.3.0 glue_1.6.2
[39] GenomeInfoDbData_1.2.8 rappdirs_0.3.3
[41] Rcpp_1.0.12 Biobase_2.56.0
[43] jquerylib_0.1.4 vctrs_0.6.5
[45] Biostrings_2.64.0 rtracklayer_1.56.0
[47] xfun_0.41 stringr_1.5.1
[49] irlba_2.3.5 lifecycle_1.0.4
[51] restfulr_0.0.14 ensembldb_2.20.2
[53] XML_3.99-0.14 zlibbioc_1.42.0
[55] zoo_1.8-10 scales_1.3.0
[57] gggrid_0.2-0 hms_1.1.1
[59] promises_1.2.0.1 MatrixGenerics_1.8.0
[61] ProtGenerics_1.28.0 parallel_4.2.0
[63] SummarizedExperiment_1.26.1 RColorBrewer_1.1-3
[65] AnnotationFilter_1.20.0 LDlinkR_1.2.3
[67] yaml_2.3.5 curl_4.3.2
[69] memoise_2.0.1 sass_0.4.1
[71] biomaRt_2.54.1 stringi_1.7.6
[73] RSQLite_2.3.1 highr_0.9
[75] S4Vectors_0.34.0 BiocIO_1.6.0
[77] GenomicFeatures_1.48.3 BiocGenerics_0.42.0
[79] filelock_1.0.2 BiocParallel_1.30.3
[81] repr_1.1.4 GenomeInfoDb_1.39.9
[83] rlang_1.1.2 pkgconfig_2.0.3
[85] matrixStats_0.62.0 bitops_1.0-7
[87] evaluate_0.15 lattice_0.20-45
[89] purrr_1.0.2 labeling_0.4.2
[91] GenomicAlignments_1.32.0 htmlwidgets_1.5.4
[93] cowplot_1.1.1 bit_4.0.4
[95] tidyselect_1.2.0 magrittr_2.0.3
[97] AMR_2.1.1 R6_2.5.1
[99] IRanges_2.30.0 generics_0.1.2
[101] DelayedArray_0.22.0 DBI_1.2.2
[103] withr_2.5.0 pgenlibr_0.3.3
[105] pillar_1.9.0 whisker_0.4
[107] mixsqp_0.3-43 KEGGREST_1.36.3
[109] RCurl_1.98-1.7 tibble_3.2.1
[111] crayon_1.5.1 utf8_1.2.2
[113] BiocFileCache_2.4.0 plotly_4.10.0
[115] tzdb_0.4.0 rmarkdown_2.25
[117] progress_1.2.2 data.table_1.14.2
[119] blob_1.2.3 git2r_0.30.1
[121] digest_0.6.29 tidyr_1.3.0
[123] httpuv_1.6.5 stats4_4.2.0
[125] munsell_0.5.0 viridisLite_0.4.0
[127] skimr_2.1.4 bslib_0.3.1