Last updated: 2025-05-25
Checks: 6 1
Knit directory: multigroup_ctwas_analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown file has unstaged changes. To know which version of
the R Markdown file created these results, you’ll want to first commit
it to the Git repo. If you’re still working on the analysis, you can
ignore this warning. When you’re finished, you can run
wflow_publish
to commit the R Markdown file and build the
HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20231112)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version c791833. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .Rhistory
Ignored: cv/
Unstaged changes:
Modified: analysis/realdata_final_tissueselection_mingene0_splicing_exclude_brainprocessed.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown
(analysis/realdata_final_tissueselection_mingene0_splicing_exclude_brainprocessed.Rmd
)
and HTML
(docs/realdata_final_tissueselection_mingene0_splicing_exclude_brainprocessed.html
)
files. If you’ve configured a remote Git repository (see
?wflow_git_remote
), click on the hyperlinks in the table
below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | c791833 | XSun | 2025-05-21 | update |
html | c791833 | XSun | 2025-05-21 | update |
For non-psychiatric traits, we ran a cTWAS analysis using sQTL data from all 49 GTEx tissues.
For psychiatric traits, we used only the 9 GTEx brain tissues.
We ranked tissues by their G-test p-values & Fisher p-values and selected those passing the Bonferroni threshold (0.05 divided by the number of tissues) for the multi-group cTWAS analysis.
Default settings were used for computing z-scores, assembling input data, and estimating model parameters.
Mem: 50g/node got killed, 100g/node
z_gene <- compute_gene_z(z_snp, weights, ncore=10)
res <- assemble_region_data(region_info,
z_snp,
z_gene,
weights,
snp_map,
maxSNP = Inf,
min_group_size = 100,
thin = 1,
adjust_boundary_genes = TRUE,
ncore = 15)
param <- est_param(region_data,
group_prior_var_structure = "shared_all",
null_method = "ctwas",
niter_prefit = 3,
min_gene = 0,
min_var = 2,
min_p_single_effect = 0.8,
niter = 200,
ncore = 15,
verbose=TRUE)
library(ctwas)
Warning: replacing previous import 'utils::download.file' by
'restfulr::download.file' when loading 'rtracklayer'
source("/project/xinhe/xsun/multi_group_ctwas/data/samplesize.R")
trait_nopsy <- c("LDL-ukb-d-30780_irnt","aFib-ebi-a-GCST006414","ATH_gtexukb","BMI-panukb","HB-panukb",
"Height-panukb","HTN-panukb","IBD-ebi-a-GCST004131","PLT-panukb","RA-panukb","RBC-panukb",
"SBP-ukb-a-360","T1D-GCST90014023","WBC-ieu-b-30","T2D-panukb")
trait_psy <- c("SCZ-ieu-b-5102","ASD-ieu-a-1185","BIP-ieu-b-5110","MDD-ieu-b-102","PD-ieu-b-7","ADHD-ieu-a-1183","NS-ukb-a-230")
DT::datatable(matrix())
folder_results <- "/project/xinhe/xsun/multi_group_ctwas/21.tissue_selection_0511/results/S_thin1_shared_all_mingene0_exclude_brainprocess/"
converge_df <- c()
for (trait in trait_nopsy){
param <- readRDS(paste0(folder_results,trait,"/",trait,".thin1.shared_all.param.RDS"))
gwas_n <- samplesize[trait]
param_summarized_fisher <- summarize_param(param = param,gwas_n = gwas_n,enrichment_test = "fisher",alternative = "greater")
param_summarized_G <- summarize_param(param = param,gwas_n = gwas_n,enrichment_test = "G")
param_df <- data.frame(
group = names(param_summarized_fisher$group_size),
group_size = as.numeric(param_summarized_fisher$group_size[names(param_summarized_fisher$group_size)]),
group_pve = as.numeric(param_summarized_fisher$group_pve[names(param_summarized_fisher$group_size)]),
prop_heritability = as.numeric(param_summarized_fisher$prop_heritability[names(param_summarized_fisher$group_size)]),
log_enrichment = as.numeric(param_summarized_fisher$log_enrichment[names(param_summarized_fisher$group_size)]),
log_enrichment_se = as.numeric(param_summarized_fisher$log_enrichment_se[names(param_summarized_fisher$group_size)]),
enrichment_pval_fisher = as.numeric(param_summarized_fisher$enrichment_pval[names(param_summarized_fisher$group_size)]),
enrichment_pval_G = as.numeric(param_summarized_G$enrichment_pval[names(param_summarized_G$group_size)])
)
param_df$total_pve <- param_summarized_fisher$total_pve
param_df$prop_heritability <- paste0(round(param_df$prop_heritability * 100, 5), "%")
param_df <- param_df[order(param_df$enrichment_pval_fisher,decreasing = F),]
param_df_qtl <- param_df[-nrow(param_df),]
threshold <- 0.05/(nrow(param_df_qtl)-1)
cat("<br>")
cat(knitr::knit_print(DT::datatable(param_df, caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black; font-size:150% ;',trait,options = list(pageLength = 10)))))
cat("<br>")
cat("<br>")
cat("<br>")
print(paste0("p-value cutoff(0.05/num_tissue) = ",threshold))
cat("<br>")
cat("<br>")
cat(paste0("Number of selected tissue -- fisher = ",min(10,sum(param_df_qtl$enrichment_pval_fisher < threshold)),"\n"))
cat("<br>")
cat(paste0(
head(param_df_qtl$group[param_df_qtl$enrichment_pval_fisher < threshold], 10),
collapse = " "
))
cat("<br>")
cat("<br>")
cat("<br>")
cat(paste0("Number of selected tissue -- G = ",min(10,sum(param_df_qtl$enrichment_pval_G < threshold)),"\n"))
cat("<br>")
cat(paste0(
head(param_df_qtl$group[param_df_qtl$enrichment_pval_G < threshold], 10),
collapse = " "
))
cat("<br>")
cat("<br>")
cat("<br>")
EM_iter <- length(param$loglik_iters)
converge <- param$converged
converge_df <- rbind(converge_df,c(trait,EM_iter,converge))
}
[1] “p-value cutoff(0.05/num_tissue) =
0.00208333333333333”
Number of selected tissue – fisher = 8
Artery_Aorta|sQTL Whole_Blood|sQTL Adipose_Visceral_Omentum|sQTL
Liver|sQTL Artery_Tibial|sQTL Spleen|sQTL Muscle_Skeletal|sQTL
Skin_Not_Sun_Exposed_Suprapubic|sQTL
Number of selected
tissue – G = 8
Artery_Aorta|sQTL Whole_Blood|sQTL
Adipose_Visceral_Omentum|sQTL Liver|sQTL Artery_Tibial|sQTL Spleen|sQTL
Muscle_Skeletal|sQTL
Skin_Not_Sun_Exposed_Suprapubic|sQTL
[1] “p-value cutoff(0.05/num_tissue) =
0.00208333333333333”
Number of selected tissue – fisher = 5
Muscle_Skeletal|sQTL Heart_Atrial_Appendage|sQTL
Heart_Left_Ventricle|sQTL Colon_Sigmoid|sQTL
Adipose_Subcutaneous|sQTL
Number of selected tissue – G = 5
Muscle_Skeletal|sQTL Heart_Atrial_Appendage|sQTL
Heart_Left_Ventricle|sQTL Colon_Sigmoid|sQTL
Adipose_Subcutaneous|sQTL
[1] “p-value cutoff(0.05/num_tissue) =
0.00208333333333333”
Number of selected tissue – fisher = 6
Artery_Aorta|sQTL Lung|sQTL Heart_Atrial_Appendage|sQTL Thyroid|sQTL
Skin_Not_Sun_Exposed_Suprapubic|sQTL
Skin_Sun_Exposed_Lower_leg|sQTL
Number of selected tissue – G
= 6
Artery_Aorta|sQTL Lung|sQTL Heart_Atrial_Appendage|sQTL
Thyroid|sQTL Skin_Not_Sun_Exposed_Suprapubic|sQTL
Skin_Sun_Exposed_Lower_leg|sQTL
[1] “p-value cutoff(0.05/num_tissue) = 0.0015625”
Number of selected tissue – fisher = 5
Esophagus_Muscularis|sQTL Brain_Cerebellum|sQTL
Brain_Caudate_basal_ganglia|sQTL Adipose_Subcutaneous|sQTL
Esophagus_Gastroesophageal_Junction|sQTL
Number of selected
tissue – G = 10
Esophagus_Muscularis|sQTL Brain_Cerebellum|sQTL
Brain_Caudate_basal_ganglia|sQTL Adipose_Subcutaneous|sQTL
Esophagus_Gastroesophageal_Junction|sQTL Adipose_Visceral_Omentum|sQTL
Adrenal_Gland|sQTL Brain_Nucleus_accumbens_basal_ganglia|sQTL
Cells_Cultured_fibroblasts|sQTL Colon_Sigmoid|sQTL
[1] “p-value cutoff(0.05/num_tissue) =
0.00208333333333333”
Number of selected tissue – fisher = 6
Liver|sQTL Spleen|sQTL Artery_Tibial|sQTL Adrenal_Gland|sQTL
Lung|sQTL Stomach|sQTL
Number of selected tissue – G = 6
Liver|sQTL Spleen|sQTL Artery_Tibial|sQTL Adrenal_Gland|sQTL
Lung|sQTL Stomach|sQTL
[1] “p-value cutoff(0.05/num_tissue) =
0.00208333333333333”
Number of selected tissue – fisher = 4
Cells_Cultured_fibroblasts|sQTL Artery_Tibial|sQTL Spleen|sQTL
Esophagus_Gastroesophageal_Junction|sQTL
Number of selected
tissue – G = 10
Cells_Cultured_fibroblasts|sQTL Artery_Tibial|sQTL
Spleen|sQTL Esophagus_Gastroesophageal_Junction|sQTL
Adipose_Visceral_Omentum|sQTL Adrenal_Gland|sQTL Artery_Aorta|sQTL
Artery_Coronary|sQTL Colon_Transverse|sQTL
Esophagus_Mucosa|sQTL
[1] “p-value cutoff(0.05/num_tissue) =
0.00208333333333333”
Number of selected tissue – fisher = 6
Artery_Tibial|sQTL Skin_Not_Sun_Exposed_Suprapubic|sQTL
Heart_Atrial_Appendage|sQTL Adipose_Visceral_Omentum|sQTL Lung|sQTL
Spleen|sQTL
Number of selected tissue – G = 6
Artery_Tibial|sQTL Skin_Not_Sun_Exposed_Suprapubic|sQTL
Heart_Atrial_Appendage|sQTL Adipose_Visceral_Omentum|sQTL Lung|sQTL
Spleen|sQTL
[1] “p-value cutoff(0.05/num_tissue) =
0.00208333333333333”
Number of selected tissue – fisher = 6
Esophagus_Mucosa|sQTL Colon_Transverse|sQTL Adrenal_Gland|sQTL
Whole_Blood|sQTL Thyroid|sQTL
Skin_Not_Sun_Exposed_Suprapubic|sQTL
Number of selected
tissue – G = 6
Esophagus_Mucosa|sQTL Colon_Transverse|sQTL
Adrenal_Gland|sQTL Whole_Blood|sQTL Thyroid|sQTL
Skin_Not_Sun_Exposed_Suprapubic|sQTL
[1] “p-value cutoff(0.05/num_tissue) =
0.00208333333333333”
Number of selected tissue – fisher = 3
Spleen|sQTL Liver|sQTL Muscle_Skeletal|sQTL
Number of
selected tissue – G = 10
Spleen|sQTL Liver|sQTL Muscle_Skeletal|sQTL
Adipose_Subcutaneous|sQTL Artery_Aorta|sQTL Artery_Coronary|sQTL
Colon_Sigmoid|sQTL Esophagus_Gastroesophageal_Junction|sQTL Lung|sQTL
Skin_Not_Sun_Exposed_Suprapubic|sQTL
[1] “p-value cutoff(0.05/num_tissue) =
0.00208333333333333”
Number of selected tissue – fisher = 2
Pituitary|sQTL Skin_Sun_Exposed_Lower_leg|sQTL
Number of
selected tissue – G = 2
Pituitary|sQTL
Skin_Sun_Exposed_Lower_leg|sQTL
[1] “p-value cutoff(0.05/num_tissue) =
0.00208333333333333”
Number of selected tissue – fisher = 6
Artery_Tibial|sQTL Spleen|sQTL Adrenal_Gland|sQTL Lung|sQTL
Skin_Not_Sun_Exposed_Suprapubic|sQTL
Colon_Sigmoid|sQTL
Number of selected tissue – G = 7
Artery_Tibial|sQTL Spleen|sQTL Adrenal_Gland|sQTL Lung|sQTL
Skin_Not_Sun_Exposed_Suprapubic|sQTL Colon_Sigmoid|sQTL
Adipose_Subcutaneous|sQTL
[1] “p-value cutoff(0.05/num_tissue) =
0.00208333333333333”
Number of selected tissue – fisher = 4
Cells_Cultured_fibroblasts|sQTL Adrenal_Gland|sQTL
Heart_Left_Ventricle|sQTL Esophagus_Mucosa|sQTL
Number of
selected tissue – G = 4
Cells_Cultured_fibroblasts|sQTL
Adrenal_Gland|sQTL Heart_Left_Ventricle|sQTL
Esophagus_Mucosa|sQTL
[1] “p-value cutoff(0.05/num_tissue) =
0.00208333333333333”
Number of selected tissue – fisher = 5
Lung|sQTL Whole_Blood|sQTL Artery_Aorta|sQTL Adrenal_Gland|sQTL
Esophagus_Muscularis|sQTL
Number of selected tissue – G = 5
Lung|sQTL Whole_Blood|sQTL Artery_Aorta|sQTL Adrenal_Gland|sQTL
Esophagus_Muscularis|sQTL
[1] “p-value cutoff(0.05/num_tissue) =
0.00208333333333333”
Number of selected tissue – fisher = 8
Skin_Not_Sun_Exposed_Suprapubic|sQTL Whole_Blood|sQTL Spleen|sQTL
Cells_Cultured_fibroblasts|sQTL Adipose_Visceral_Omentum|sQTL
Muscle_Skeletal|sQTL Heart_Left_Ventricle|sQTL
Artery_Coronary|sQTL
Number of selected tissue – G = 10
Skin_Not_Sun_Exposed_Suprapubic|sQTL Whole_Blood|sQTL Spleen|sQTL
Cells_Cultured_fibroblasts|sQTL Adipose_Visceral_Omentum|sQTL
Muscle_Skeletal|sQTL Heart_Left_Ventricle|sQTL Artery_Coronary|sQTL
Adipose_Subcutaneous|sQTL Lung|sQTL
[1] “p-value cutoff(0.05/num_tissue) = 0.0015625”
Number of selected tissue – fisher = 6
Pancreas|sQTL
Brain_Cerebellum|sQTL Brain_Cerebellar_Hemisphere|sQTL Whole_Blood|sQTL
Liver|sQTL Adipose_Subcutaneous|sQTL
Number of selected
tissue – G = 6
Pancreas|sQTL Brain_Cerebellum|sQTL
Brain_Cerebellar_Hemisphere|sQTL Whole_Blood|sQTL Liver|sQTL
Adipose_Subcutaneous|sQTL
colnames(converge_df) <- c("trait","num_EM_iter","converge")
cat("<br>")
DT::datatable(converge_df,caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black; font-size:150% ;','EM convergence '),options = list(pageLength = 30) )
cat("<br>")
converge_df <- c()
for (trait in trait_psy){
param <- readRDS(paste0(folder_results,trait,"/",trait,".thin1.shared_all.param.RDS"))
gwas_n <- samplesize[trait]
param_summarized_fisher <- summarize_param(param = param,gwas_n = gwas_n,enrichment_test = "fisher",alternative = "greater")
param_summarized_G <- summarize_param(param = param,gwas_n = gwas_n,enrichment_test = "G")
param_df <- data.frame(
group = names(param_summarized_fisher$group_size),
group_size = as.numeric(param_summarized_fisher$group_size[names(param_summarized_fisher$group_size)]),
group_pve = as.numeric(param_summarized_fisher$group_pve[names(param_summarized_fisher$group_size)]),
prop_heritability = as.numeric(param_summarized_fisher$prop_heritability[names(param_summarized_fisher$group_size)]),
log_enrichment = as.numeric(param_summarized_fisher$log_enrichment[names(param_summarized_fisher$group_size)]),
log_enrichment_se = as.numeric(param_summarized_fisher$log_enrichment_se[names(param_summarized_fisher$group_size)]),
enrichment_pval_fisher = as.numeric(param_summarized_fisher$enrichment_pval[names(param_summarized_fisher$group_size)]),
enrichment_pval_G = as.numeric(param_summarized_G$enrichment_pval[names(param_summarized_G$group_size)])
)
param_df$total_pve <- param_summarized_fisher$total_pve
param_df$prop_heritability <- paste0(round(param_df$prop_heritability * 100, 5), "%")
param_df <- param_df[order(param_df$enrichment_pval_fisher,decreasing = F),]
param_df_qtl <- param_df[-nrow(param_df),]
threshold <- 0.05/(nrow(param_df_qtl)-1)
cat("<br>")
cat(knitr::knit_print(DT::datatable(param_df, caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black; font-size:150% ;',trait,options = list(pageLength = 10)))))
cat("<br>")
cat("<br>")
cat("<br>")
print(paste0("p-value cutoff(0.05/num_tissue) = ",threshold))
cat("<br>")
cat("<br>")
cat(paste0("Number of selected tissue -- fisher = ",min(10,sum(param_df_qtl$enrichment_pval_fisher < threshold)),"\n"))
cat("<br>")
cat(paste0(
head(param_df_qtl$group[param_df_qtl$enrichment_pval_fisher < threshold], 10),
collapse = " "
))
cat("<br>")
cat("<br>")
cat("<br>")
cat(paste0("Number of selected tissue -- G = ",min(10,sum(param_df_qtl$enrichment_pval_G < threshold)),"\n"))
cat("<br>")
cat(paste0(
head(param_df_qtl$group[param_df_qtl$enrichment_pval_G < threshold], 10),
collapse = " "
))
cat("<br>")
cat("<br>")
cat("<br>")
EM_iter <- length(param$loglik_iters)
converge <- param$converged
converge_df <- rbind(converge_df,c(trait,EM_iter,converge))
}
[1] “p-value cutoff(0.05/num_tissue) =
0.00714285714285714”
Number of selected tissue – fisher = 2
Brain_Cerebellar_Hemisphere|sQTL
Brain_Cerebellum|sQTL
Number of selected tissue – G = 2
Brain_Cerebellar_Hemisphere|sQTL
Brain_Cerebellum|sQTL
[1] “p-value cutoff(0.05/num_tissue) =
0.00714285714285714”
Number of selected tissue – fisher = 3
Brain_Frontal_Cortex_BA9|sQTL Brain_Hypothalamus|sQTL
Brain_Caudate_basal_ganglia|sQTL
Number of selected tissue –
G = 3
Brain_Frontal_Cortex_BA9|sQTL Brain_Hypothalamus|sQTL
Brain_Caudate_basal_ganglia|sQTL
[1] “p-value cutoff(0.05/num_tissue) =
0.00714285714285714”
Number of selected tissue – fisher = 4
Brain_Cerebellum|sQTL Brain_Cortex|sQTL
Brain_Cerebellar_Hemisphere|sQTL
Brain_Putamen_basal_ganglia|sQTL
Number of selected tissue –
G = 4
Brain_Cerebellum|sQTL Brain_Cortex|sQTL
Brain_Cerebellar_Hemisphere|sQTL
Brain_Putamen_basal_ganglia|sQTL
[1] “p-value cutoff(0.05/num_tissue) =
0.00714285714285714”
Number of selected tissue – fisher = 2
Brain_Cerebellar_Hemisphere|sQTL
Brain_Cerebellum|sQTL
Number of selected tissue – G = 2
Brain_Cerebellar_Hemisphere|sQTL
Brain_Cerebellum|sQTL
[1] “p-value cutoff(0.05/num_tissue) =
0.00714285714285714”
Number of selected tissue – fisher = 4
Brain_Cerebellar_Hemisphere|sQTL
Brain_Nucleus_accumbens_basal_ganglia|sQTL Brain_Cortex|sQTL
Brain_Frontal_Cortex_BA9|sQTL
Number of selected tissue – G =
4
Brain_Cerebellar_Hemisphere|sQTL
Brain_Nucleus_accumbens_basal_ganglia|sQTL Brain_Cortex|sQTL
Brain_Frontal_Cortex_BA9|sQTL
[1] “p-value cutoff(0.05/num_tissue) =
0.00714285714285714”
Number of selected tissue – fisher = 1
Brain_Cerebellar_Hemisphere|sQTL
Number of selected
tissue – G = 1
Brain_Cerebellar_Hemisphere|sQTL
[1] “p-value cutoff(0.05/num_tissue) =
0.00714285714285714”
Number of selected tissue – fisher = 1
Brain_Cerebellar_Hemisphere|sQTL
Number of selected
tissue – G = 1
Brain_Cerebellar_Hemisphere|sQTL
colnames(converge_df) <- c("trait","num_EM_iter","converge")
cat("<br>")
DT::datatable(converge_df,caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black; font-size:150% ;','EM convergence '),options = list(pageLength = 30) )
cat("<br>")
sessionInfo()
R version 4.2.0 (2022-04-22)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)
Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so
locale:
[1] C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] ctwas_0.5.19
loaded via a namespace (and not attached):
[1] colorspace_2.0-3 rjson_0.2.21
[3] ellipsis_0.3.2 rprojroot_2.0.3
[5] XVector_0.36.0 locuszoomr_0.2.1
[7] GenomicRanges_1.48.0 base64enc_0.1-3
[9] fs_1.5.2 rstudioapi_0.13
[11] DT_0.22 ggrepel_0.9.1
[13] bit64_4.0.5 AnnotationDbi_1.58.0
[15] fansi_1.0.3 xml2_1.3.3
[17] codetools_0.2-18 logging_0.10-108
[19] cachem_1.0.6 knitr_1.39
[21] jsonlite_1.8.0 workflowr_1.7.0
[23] Rsamtools_2.12.0 dbplyr_2.1.1
[25] png_0.1-7 readr_2.1.2
[27] compiler_4.2.0 httr_1.4.3
[29] assertthat_0.2.1 Matrix_1.5-3
[31] fastmap_1.1.0 lazyeval_0.2.2
[33] cli_3.6.1 later_1.3.0
[35] htmltools_0.5.2 prettyunits_1.1.1
[37] tools_4.2.0 gtable_0.3.0
[39] glue_1.6.2 GenomeInfoDbData_1.2.8
[41] dplyr_1.1.4 rappdirs_0.3.3
[43] Rcpp_1.0.12 Biobase_2.56.0
[45] jquerylib_0.1.4 vctrs_0.6.5
[47] Biostrings_2.64.0 rtracklayer_1.56.0
[49] crosstalk_1.2.0 xfun_0.41
[51] stringr_1.5.1 irlba_2.3.5
[53] lifecycle_1.0.4 restfulr_0.0.14
[55] ensembldb_2.20.2 XML_3.99-0.14
[57] zlibbioc_1.42.0 zoo_1.8-10
[59] scales_1.3.0 gggrid_0.2-0
[61] hms_1.1.1 promises_1.2.0.1
[63] MatrixGenerics_1.8.0 ProtGenerics_1.28.0
[65] parallel_4.2.0 SummarizedExperiment_1.26.1
[67] AnnotationFilter_1.20.0 LDlinkR_1.2.3
[69] yaml_2.3.5 curl_4.3.2
[71] memoise_2.0.1 ggplot2_3.5.1
[73] sass_0.4.1 biomaRt_2.54.1
[75] stringi_1.7.6 RSQLite_2.3.1
[77] S4Vectors_0.34.0 BiocIO_1.6.0
[79] GenomicFeatures_1.48.3 BiocGenerics_0.42.0
[81] filelock_1.0.2 BiocParallel_1.30.3
[83] repr_1.1.4 GenomeInfoDb_1.39.9
[85] rlang_1.1.2 pkgconfig_2.0.3
[87] matrixStats_0.62.0 bitops_1.0-7
[89] evaluate_0.15 lattice_0.20-45
[91] purrr_1.0.2 GenomicAlignments_1.32.0
[93] htmlwidgets_1.5.4 cowplot_1.1.1
[95] bit_4.0.4 tidyselect_1.2.0
[97] magrittr_2.0.3 AMR_2.1.1
[99] R6_2.5.1 IRanges_2.30.0
[101] generics_0.1.2 DelayedArray_0.22.0
[103] DBI_1.2.2 pgenlibr_0.3.3
[105] pillar_1.9.0 whisker_0.4
[107] mixsqp_0.3-43 KEGGREST_1.36.3
[109] RCurl_1.98-1.7 tibble_3.2.1
[111] crayon_1.5.1 utf8_1.2.2
[113] BiocFileCache_2.4.0 plotly_4.10.0
[115] tzdb_0.4.0 rmarkdown_2.25
[117] progress_1.2.2 grid_4.2.0
[119] data.table_1.14.2 blob_1.2.3
[121] git2r_0.30.1 digest_0.6.29
[123] tidyr_1.3.0 httpuv_1.6.5
[125] stats4_4.2.0 munsell_0.5.0
[127] viridisLite_0.4.0 skimr_2.1.4
[129] bslib_0.3.1