Last updated: 2024-12-19

Checks: 6 1

Knit directory: multigroup_ctwas_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20231112) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 65c1ad1. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory

Unstaged changes:
    Modified:   analysis/multi_group_6traits_15weights_ess_postprocessing_compare_nozfilter.Rmd
    Modified:   analysis/multi_group_6traits_15weights_ess_postprocessing_compare_pipz.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/multi_group_6traits_15weights_ess_postprocessing_compare_nozfilter.Rmd) and HTML (docs/multi_group_6traits_15weights_ess_postprocessing_compare_nozfilter.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 65c1ad1 XSun 2024-12-19 update
html 65c1ad1 XSun 2024-12-19 update
Rmd 9223075 XSun 2024-12-18 update

Introduction

We compare post-processed results with the original results: https://sq-96.github.io/multigroup_ctwas_analysis/multi_group_6traits_15weights_ess.html

The post-processing steps include the following:

  1. Region Merging

    For the regions with susie_pip > 0.5

  2. LD Mismatch Fixing

  • Regions were selected where nonSNP_PIP > 0.5.
  • For genes with susie_pip > thresholds (0.5 and 0.2), we performed LD mismatch diagnosis.
  • To address LD mismatches, two strategies were employed:
    • Fine-mapping the region without LD.
    • Removing mismatched SNPs for all genes in the problematic regions, updating gene Z-scores, re-estimated L, and re-fine-mapping with LD.

The problematic regions here are the regions 1) reported by diagnose_LD_mismatch_susie function & 2) containing at least 1 problematic genes reported by get_problematic_genes function.

library(ctwas)
library(EnsDb.Hsapiens.v86)
library(ggplot2)
library(gridExtra)
library(dplyr)

ens_db <- EnsDb.Hsapiens.v86

mapping_predictdb <- readRDS("/project2/xinhe/shared_data/multigroup_ctwas/weights/mapping_files/PredictDB_mapping.RDS")
mapping_munro <- readRDS("/project2/xinhe/shared_data/multigroup_ctwas/weights/mapping_files/Munro_mapping.RDS")
mapping_two <- rbind(mapping_predictdb,mapping_munro)

aFib-ebi-a-GCST006414

trait <- "aFib-ebi-a-GCST006414"

results_dir_origin <- paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/results/",trait,"/")
ctwas_res_origin <- readRDS(paste0(results_dir_origin,trait,".ctwas.res.RDS"))

finemap_res_origin <- ctwas_res_origin$finemap_res

Region merge

load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/rm_",trait,".rdata"))

finemap_res_rm <- res_regionmerge$finemap_res
finemap_res_rm_boundary_genes <- finemap_res_rm[finemap_res_rm$id %in%selected_boundary_genes$id,]
finemap_res_rm_boundary_genes_pip <- finemap_res_rm_boundary_genes[,c("id","susie_pip","cs")]


finemap_res_origin_boundary_genes <- finemap_res_origin[finemap_res_origin$id %in%selected_boundary_genes$id,]
finemap_res_origin_boundary_genes_pip <- finemap_res_origin_boundary_genes[,c("id","susie_pip","cs")]

finemap_res_compare_regionmerge <- merge(finemap_res_origin_boundary_genes_pip,finemap_res_rm_boundary_genes_pip, by = "id")
colnames(finemap_res_compare_regionmerge) <- c("id","susie_pip_origin","cs_origin","susie_pip_reginmerge","cs_reginmerge")

DT::datatable(finemap_res_compare_regionmerge,caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black;  font-size:150% ;','Selected boundary genes (susie_pip > 0.5)'),options = list(pageLength = 10) )

LD-mismatch

Diagnosis

file_pipthreshold02 <- paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_diagnosis_pipthres02_nozfilter_", trait, ".rdata")

load(file_pipthreshold02)
pip_02 <- data.frame(
"PIP Threshold" = "0.2",
"Number of Selected Regions" = length(selected_region_ids),
"Number of Problematic Genes" = length(problematic_genes),
"Number of Problematic Regions" = length(problematic_region_ids),
"Number of Problematic SNPs" = length(res_ldmismatch$problematic_snps),
"Number of Flipped SNPs" = length(res_ldmismatch$flipped_snps)
)

file_pipthreshold05 <- paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_diagnosis_pipthres05_nozfilter_", trait, ".rdata")


load(file_pipthreshold05)
pip_05 <- data.frame(
"PIP Threshold" = "0.5",
"Number of Selected Regions" = length(selected_region_ids),
"Number of Problematic Genes" = length(problematic_genes),
"Number of Problematic Regions" = length(problematic_region_ids),
"Number of Problematic SNPs" = length(res_ldmismatch$problematic_snps),
"Number of Flipped SNPs" = length(res_ldmismatch$flipped_snps)
)

results_table <- rbind(pip_02, pip_05)

DT::datatable(results_table,caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black;  font-size:150% ;','LD mismatch diagnosis table for different gene cutoff'),options = list(pageLength = 10) )

Comparing 2 LD mismatch fixing methods

file_ldmismatch_results <- paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_pipthres02_nold_nozfilter_",trait,".rdata")

if(file.exists(file_ldmismatch_results)) {
  
  load(file_pipthreshold02)
  
  load(file_ldmismatch_results)
  finemap_res_ldmm_nold <- res_ldmm_nold$finemap_res
  load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_pipthres02_removesnp_nozfilter_",trait,".rdata"))
  finemap_res_ldmm_removesnp <- res_ldmm_removesnp$finemap_res
  
  finemap_res_ldmm_nold_problematic_gene <- finemap_res_ldmm_nold[finemap_res_ldmm_nold$region_id %in% problematic_region_ids & finemap_res_ldmm_nold$type != "SNP",]
  finemap_res_ldmm_removesnp_problematic_gene <- finemap_res_ldmm_removesnp[finemap_res_ldmm_removesnp$region_id %in% problematic_region_ids & finemap_res_ldmm_removesnp$type != "SNP",]

  merge_2method <- merge(finemap_res_ldmm_nold_problematic_gene,finemap_res_ldmm_removesnp_problematic_gene, by ="id",all.x=T)
  merge_2method$highlight <- ifelse(merge_2method$id %in% problematic_genes, "problematic genes", "good genes")
  merge_2method$susie_pip.y[is.na(merge_2method$susie_pip.y)] <- 1.5
  p1 <- ggplot(data = merge_2method, aes(x = susie_pip.x, y = susie_pip.y, color = highlight, alpha = highlight)) + 
    geom_point() +
    scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +  
    scale_alpha_manual(values = c("problematic genes" = 1, "good genes" = 0.1)) +
    labs(x = "PIP_noLD", y = "PIP_removesnp") + 
    geom_abline(slope = 1, intercept = 0, col = "red") + 
    ggtitle("Problematic regions only, genes only") +
    theme_minimal()

  finemap_res_rm_problematic_gene <- finemap_res_rm[finemap_res_rm$region_id %in% problematic_region_ids & finemap_res_rm$type != "SNP",]

  merge_rm_ldmm_nold <-  merge(finemap_res_rm_problematic_gene,finemap_res_ldmm_nold_problematic_gene, by ="id",all.x=T)
  merge_rm_ldmm_nold$highlight <- ifelse(merge_rm_ldmm_nold$id %in% problematic_genes, "problematic genes", "good genes")
  merge_rm_ldmm_nold$susie_pip.y[is.na(merge_rm_ldmm_nold$susie_pip.y)] <- 1.5
  p2 <- ggplot(data = merge_rm_ldmm_nold, aes(x= susie_pip.x, y= susie_pip.y, color = highlight, alpha = highlight)) + 
    geom_point() +
    labs(x="PIP_after_regionmerge", y="PIP_noLD") + 
    scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +  
    scale_alpha_manual(values = c("problematic genes" = 1, "good genes" = 0.1)) +
    geom_abline(slope = 1, intercept = 0, col ="red") + 
    ggtitle("problematic regions only, genes only") +
    theme_minimal()

  merge_rm_ldmm_removesnp <-  merge(finemap_res_rm_problematic_gene,finemap_res_ldmm_removesnp_problematic_gene, by ="id",all.x =T)
  merge_rm_ldmm_removesnp$highlight <- ifelse(merge_rm_ldmm_removesnp$id %in% problematic_genes, "problematic genes", "good genes")
  merge_rm_ldmm_removesnp$susie_pip.y[is.na(merge_rm_ldmm_removesnp$susie_pip.y)] <- 1.5
  p3 <- ggplot(data = merge_rm_ldmm_removesnp, aes(x= susie_pip.x, y= susie_pip.y, color = highlight, alpha = highlight)) + 
    geom_point() +
    labs(x="PIP_after_regionmerge", y="PIP_removesnp") + 
    scale_alpha_manual(values = c("problematic genes" = 1, "good genes" = 0.1)) +
    scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
    geom_abline(slope = 1, intercept = 0, col ="red") + 
    ggtitle("problematic regions only, genes only") +
    theme_minimal()
  print(sprintf("Total number of molecular traits in problematic regions = %s",nrow(merge_rm_ldmm_removesnp)))
  print(sprintf("Number of molecular traits disappeared after removing prblematic SNPs = %s", sum(merge_rm_ldmm_removesnp$susie_pip.y == 1.5)))
  print("The dots showing PIP =1.5 means: these genes were removed since the only QTLs of them are problematic")
  grid.arrange(p1,p2,p3, ncol = 3)



}else{
  
  print("There's no problematic genes, no need to compare")
  
}
[1] "Total number of molecular traits in problematic regions = 1516"
[1] "Number of molecular traits disappeared after removing prblematic SNPs = 8"
[1] "The dots showing PIP =1.5 means: these genes were removed since the only QTLs of them are problematic"

Version Author Date
65c1ad1 XSun 2024-12-19

Comparing z-scores and susie_pip

if(file.exists(file_ldmismatch_results)){
  
  finemap_res_origin <- ctwas_res_origin$finemap_res
  finemap_res_origin_gene <- finemap_res_origin[finemap_res_origin$type != "SNP",]
  finemap_res_origin_gene$highlight <- ifelse(finemap_res_origin_gene$id %in% problematic_genes, "problematic genes", "good genes")
  
  p1 <- ggplot(data = finemap_res_origin_gene, aes(x= abs(z), y= susie_pip, color = highlight)) + 
    geom_point() +
    scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
    ggtitle("Original ctwas results") +
    theme_minimal()
  

  finemap_res_rm_gene <- finemap_res_rm[finemap_res_rm$type != "SNP",]
  finemap_res_rm_gene$highlight <- ifelse(finemap_res_rm_gene$id %in% problematic_genes, "problematic genes", "good genes")
  
  p2 <- ggplot(data = finemap_res_rm_gene, aes(x= abs(z), y= susie_pip, color = highlight)) + 
    geom_point() +
    scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
    ggtitle("After region merge") +
    theme_minimal()


  finemap_res_ldmm_nold_gene <- finemap_res_ldmm_nold[finemap_res_ldmm_nold$type !="SNP",]
  finemap_res_ldmm_nold_gene$highlight <- ifelse(finemap_res_ldmm_nold_gene$id %in% problematic_genes, "problematic genes", "good genes")
  
  p3 <- ggplot(data = finemap_res_ldmm_nold_gene, aes(x= abs(z), y= susie_pip, color = highlight)) + 
    geom_point() +
    scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
    ggtitle("After LD mismatch fixed -- noLD") +
    theme_minimal()

  finemap_res_ldmm_removesnp_gene <- finemap_res_ldmm_removesnp[finemap_res_ldmm_removesnp$type !="SNP",]
  finemap_res_ldmm_removesnp_gene$highlight <- ifelse(finemap_res_ldmm_removesnp_gene$id %in% problematic_genes, "problematic genes", "good genes")
  
  p4 <- ggplot(data = finemap_res_ldmm_removesnp_gene, aes(x= abs(z), y= susie_pip, color = highlight)) + 
    geom_point() +
    scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
    ggtitle("After LD mismatch fixed -- SNP removed") +
    theme_minimal()


  grid.arrange(p1,p2,p3,p4, ncol = 4)
  
  print("L - estimated in region merge step")
  print(updated_data_res_regionmerge$updated_region_L[problematic_region_ids])
  load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_pipthres02_removesnp_rescreenregion_nozfilter_",trait,".rdata"))
  print("L - re-estimated after updating z_scores, region data")
  print(screen_res$screened_region_L)
}else{
  
  print("There's no problematic genes")
  
  finemap_res_origin <- ctwas_res_origin$finemap_res
  finemap_res_origin_gene <- finemap_res_origin[finemap_res_origin$type != "SNP",]

  p1 <- ggplot(data = finemap_res_origin_gene, aes(x= abs(z), y= susie_pip)) + 
    geom_point() +
    ggtitle("Original ctwas results") +
    theme_minimal()


  finemap_res_rm_gene <- finemap_res_rm[finemap_res_rm$type != "SNP",]

  p2 <- ggplot(data = finemap_res_rm_gene, aes(x= abs(z), y= susie_pip)) + 
    geom_point() +
    ggtitle("After region merge") +
    theme_minimal()

  grid.arrange(p1,p2, ncol = 2)
}

Version Author Date
65c1ad1 XSun 2024-12-19
[1] "L - estimated in region merge step"
 3_110794923_113096852 10_110801735_113568673 11_116512631_117876395 
                     3                      3                      3 
12_121569746_124493434 
                     5 
[1] "L - re-estimated after updating z_scores, region data"
 3_110794923_113096852 10_110801735_113568673 11_116512631_117876395 
                     2                      1                      1 
12_121569746_124493434 
                     3 
print("Zoom in the z<15 part")
[1] "Zoom in the z<15 part"
if(file.exists(file_ldmismatch_results)){
  

  finemap_res_origin_gene_prob <- finemap_res_origin_gene[finemap_res_origin_gene$highlight == "problematic genes",]
  p1 <- ggplot(data = finemap_res_origin_gene_prob, 
        aes(x = abs(z), y = susie_pip, color = highlight, alpha = highlight)) + 
        geom_point() +
        scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
        scale_alpha_manual(values = c("problematic genes" = 1, "good genes" = 0.01)) +
        ggtitle("Original ctwas results") +
        theme_minimal() +
        xlim(0, 15)

  finemap_res_rm_gene_prob <- finemap_res_rm_gene[finemap_res_rm_gene$highlight == "problematic genes",]
  p2 <- ggplot(data = finemap_res_rm_gene_prob, 
        aes(x = abs(z), y = susie_pip, color = highlight, alpha = highlight)) + 
        geom_point() +
        scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
        scale_alpha_manual(values = c("problematic genes" = 1, "good genes" = 0.01)) +
        ggtitle("After region merge") +
        theme_minimal() +
        xlim(0, 15)

  finemap_res_ldmm_nold_gene_prob <- finemap_res_ldmm_nold_gene[finemap_res_ldmm_nold_gene$highlight == "problematic genes",]
  p3 <- ggplot(data = finemap_res_ldmm_nold_gene_prob, 
        aes(x = abs(z), y = susie_pip, color = highlight, alpha = highlight)) + 
        geom_point() +
        scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
        scale_alpha_manual(values = c("problematic genes" = 1, "good genes" = 0.01)) +
        ggtitle("After LD mismatch fixed -- noLD") +
        theme_minimal() +
        xlim(0, 15)

  finemap_res_ldmm_removesnp_gene_prob <-   finemap_res_ldmm_removesnp_gene[finemap_res_ldmm_removesnp_gene$highlight == "problematic genes",]
  p4 <- ggplot(data = finemap_res_ldmm_removesnp_gene_prob, 
        aes(x = abs(z), y = susie_pip, color = highlight, alpha = highlight)) + 
        geom_point() +
        scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
        scale_alpha_manual(values = c("problematic genes" = 1, "good genes" = 0.01)) +
        ggtitle("After LD mismatch fixed -- SNP removed") +
        theme_minimal() +
        xlim(0, 15)
  
  grid.arrange(p1,p2,p3,p4, ncol = 4)
  
}else{

  print("There's no problematic genes")

  finemap_res_origin <- ctwas_res_origin$finemap_res
  finemap_res_origin_gene <- finemap_res_origin[finemap_res_origin$type != "SNP",]

  p1 <- ggplot(data = finemap_res_origin_gene, aes(x= abs(z), y= susie_pip)) +
    geom_point() +
    ggtitle("Original ctwas results") +
    theme_minimal()+
    xlim(0, 15)


  finemap_res_rm_gene <- finemap_res_rm[finemap_res_rm$type != "SNP",]

  p2 <- ggplot(data = finemap_res_rm_gene, aes(x= abs(z), y= susie_pip)) +
    geom_point() +
    ggtitle("After region merge") +
    theme_minimal()+
    xlim(0, 15)

  grid.arrange(p1,p2, ncol = 2)
}

Version Author Date
65c1ad1 XSun 2024-12-19

Examples for LD-mismatch fixing

weights_origin <- readRDS(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/results/",trait,"/",trait,".preprocessed.weights.RDS"))

load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_pipthres02_removesnp_weights_updated_nozfilter_",trait,".rdata"))

region_id <- "10_110801735_113568673"

finemap_res_rm <- anno_finemap_res(finemap_res_rm,
                                          snp_map = updated_data_res_regionmerge[["updated_snp_map"]],
                                          mapping_table = mapping_two,
                                          add_gene_annot = TRUE,
                                          map_by = "molecular_id",
                                          drop_unmapped = TRUE,
                                          add_position = TRUE,
                                          use_gene_pos = "mid")
2024-12-19 14:44:48 INFO::Annotating fine-mapping result ...
2024-12-19 14:44:48 INFO::Map molecular traits to genes
2024-12-19 14:44:49 INFO::Split PIPs for molecular traits mapped to multiple genes
2024-12-19 14:44:57 INFO::Add gene positions
2024-12-19 14:44:57 INFO::Add SNP positions
finemap_res_ldmm_nold <- anno_finemap_res(finemap_res_ldmm_nold,
                                          snp_map = updated_data_res_regionmerge[["updated_snp_map"]],
                                          mapping_table = mapping_two,
                                          add_gene_annot = TRUE,
                                          map_by = "molecular_id",
                                          drop_unmapped = TRUE,
                                          add_position = TRUE,
                                          use_gene_pos = "mid")
2024-12-19 14:45:08 INFO::Annotating fine-mapping result ...
2024-12-19 14:45:08 INFO::Map molecular traits to genes
2024-12-19 14:45:09 INFO::Split PIPs for molecular traits mapped to multiple genes
2024-12-19 14:45:14 INFO::Add gene positions
2024-12-19 14:45:15 INFO::Add SNP positions
finemap_res_ldmm_removesnp <- anno_finemap_res(finemap_res_ldmm_removesnp,
                                   snp_map = updated_data_res_regionmerge[["updated_snp_map"]],
                                   mapping_table = mapping_two,
                                   add_gene_annot = TRUE,
                                   map_by = "molecular_id",
                                   drop_unmapped = TRUE,
                                   add_position = TRUE,
                                   use_gene_pos = "mid")
2024-12-19 14:45:21 INFO::Annotating fine-mapping result ...
2024-12-19 14:45:21 INFO::Map molecular traits to genes
2024-12-19 14:45:22 INFO::Split PIPs for molecular traits mapped to multiple genes
2024-12-19 14:45:24 INFO::Add gene positions
2024-12-19 14:45:24 INFO::Add SNP positions
finemap_res_rm_gene <- finemap_res_rm[finemap_res_rm$type != "SNP",]
finemap_res_ldmm_removesnp_gene <- finemap_res_ldmm_removesnp[finemap_res_ldmm_removesnp$type !="SNP",]



print("locus plot -- after region merge")
[1] "locus plot -- after region merge"
make_locusplot(finemap_res_rm,
               region_id = region_id,
               ens_db = ens_db,
               weights = weights_origin,
               highlight_pip = 0.8,
               filter_protein_coding_genes = TRUE,
               filter_cs = TRUE,
               color_pval_by = "cs",
               color_pip_by = "cs",panel.heights = c(4,4,1,1))
2024-12-19 14:45:32 INFO::Limit to protein coding genes
2024-12-19 14:45:32 INFO::focal id: intron_10_110812947_110820072|Muscle_Skeletal_sQTL
2024-12-19 14:45:32 INFO::focal molecular trait: RBM20 Muscle_Skeletal sQTL
2024-12-19 14:45:32 INFO::Range of locus: chr10:110801998-113644532
2024-12-19 14:45:32 INFO::focal molecular trait QTL positions: 110814644
2024-12-19 14:45:32 INFO::Limit PIPs to credible sets

print("locus plot -- LD mismatch: no LD")
[1] "locus plot -- LD mismatch: no LD"
make_locusplot(finemap_res_ldmm_nold,
               region_id = region_id,
               ens_db = ens_db,
               weights = weights_origin,
               highlight_pip = 0.8,
               filter_protein_coding_genes = TRUE,
               filter_cs = TRUE,
               color_pval_by = "cs",
               color_pip_by = "cs",panel.heights = c(4,4,1,1))
2024-12-19 14:45:33 INFO::Limit to protein coding genes
2024-12-19 14:45:33 INFO::focal id: intron_10_110812947_110820072|Muscle_Skeletal_sQTL
2024-12-19 14:45:33 INFO::focal molecular trait: RBM20 Muscle_Skeletal sQTL
2024-12-19 14:45:33 INFO::Range of locus: chr10:110802487-113644532
2024-12-19 14:45:33 INFO::focal molecular trait QTL positions:
2024-12-19 14:45:33 INFO::Limit PIPs to credible sets

print("locus plot -- LD mismatch: snp removed")
[1] "locus plot -- LD mismatch: snp removed"
make_locusplot(finemap_res_ldmm_removesnp,
               region_id = region_id,
               ens_db = ens_db,
               weights = weights_updated,
               highlight_pip = 0.8,
               filter_protein_coding_genes = TRUE,
               filter_cs = TRUE,
               color_pval_by = "cs",
               color_pip_by = "cs",panel.heights = c(4,4,1,1))
2024-12-19 14:45:35 INFO::Limit to protein coding genes
2024-12-19 14:45:35 INFO::focal id: intron_10_110816811_110820072|Heart_Atrial_Appendage_sQTL
2024-12-19 14:45:35 INFO::focal molecular trait: RBM20 Heart_Atrial_Appendage sQTL
2024-12-19 14:45:35 INFO::Range of locus: chr10:110802487-113644532
2024-12-19 14:45:35 INFO::focal molecular trait QTL positions:
2024-12-19 14:45:35 INFO::Limit PIPs to credible sets

finemap_res_rm_gene_region <- finemap_res_rm_gene[finemap_res_rm_gene$region_id == region_id,]
finemap_res_ldmm_removesnp_gene_region <- finemap_res_ldmm_removesnp_gene[finemap_res_ldmm_removesnp_gene$region_id == region_id,]
merged_region_gene <- merge(finemap_res_rm_gene_region,finemap_res_ldmm_removesnp_gene_region,by = "id",all.x=T)
merged_region_gene <- merged_region_gene[,c("id","gene_name.x","z.x","susie_pip.x","cs.x","z.y","susie_pip.y","cs.y")]
colnames(merged_region_gene) <- c("id","gene_name","z_regionmerge","susie_pip_regionmerge","cs_regionmerge","z_ldmismatch","susie_pip_ldmismatch","cs_ldmismatch")

merged_region_gene$highlight <- ifelse(merged_region_gene$id %in% problematic_genes, "problematic genes", "good genes")

merged_region_gene$z_ldmismatch[is.na(merged_region_gene$z_ldmismatch)] <- 10
print("The dots showing z_ldmismatch =10 means: these genes were removed since the only QTLs of them are problematic")
[1] "The dots showing z_ldmismatch =10 means: these genes were removed since the only QTLs of them are problematic"
ggplot(data = merged_region_gene, aes(x= z_regionmerge, y= z_ldmismatch, color = highlight, alpha = highlight)) +
  geom_point() +
  scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
  scale_alpha_manual(values = c("problematic genes" = 1, "good genes" = 0.3)) +
  ggtitle("Comparing z-scores before/after removing the problematic SNPs") +
  theme_minimal()

DT::datatable(merged_region_gene[merged_region_gene$z_ldmismatch != merged_region_gene$z_regionmerge,],caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black;  font-size:150% ;','Genes with different z before / after removing the problematic SNPs'),options = list(pageLength = 10) )

LDL-ukb-d-30780_irnt

trait <- "LDL-ukb-d-30780_irnt"

results_dir_origin <- paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/results/",trait,"/")
ctwas_res_origin <- readRDS(paste0(results_dir_origin,trait,".ctwas.res.RDS"))

finemap_res_origin <- ctwas_res_origin$finemap_res

Region merge

load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/rm_",trait,".rdata"))

finemap_res_rm <- res_regionmerge$finemap_res
finemap_res_rm_boundary_genes <- finemap_res_rm[finemap_res_rm$id %in%selected_boundary_genes$id,]
finemap_res_rm_boundary_genes_pip <- finemap_res_rm_boundary_genes[,c("id","susie_pip","cs")]


finemap_res_origin_boundary_genes <- finemap_res_origin[finemap_res_origin$id %in%selected_boundary_genes$id,]
finemap_res_origin_boundary_genes_pip <- finemap_res_origin_boundary_genes[,c("id","susie_pip","cs")]

finemap_res_compare_regionmerge <- merge(finemap_res_origin_boundary_genes_pip,finemap_res_rm_boundary_genes_pip, by = "id")
colnames(finemap_res_compare_regionmerge) <- c("id","susie_pip_origin","cs_origin","susie_pip_reginmerge","cs_reginmerge")

DT::datatable(finemap_res_compare_regionmerge,caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black;  font-size:150% ;','Selected boundary genes (susie_pip > 0.5)'),options = list(pageLength = 10) )

LD-mismatch

Diagnosis

file_pipthreshold02 <- paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_diagnosis_pipthres02_nozfilter_", trait, ".rdata")

if (file.exists(file_pipthreshold02)) {
  load(file_pipthreshold02)
  pip_02 <- data.frame(
  "PIP Threshold" = "0.2",
  "Number of Selected Regions" = length(selected_region_ids),
  "Number of Problematic Genes" = length(problematic_genes),
  "Number of Problematic Regions" = length(problematic_region_ids),
  "Number of Problematic SNPs" = length(res_ldmismatch$problematic_snps),
  "Number of Flipped SNPs" = length(res_ldmismatch$flipped_snps)
)
}else{

  load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_diagnosis_pipthres02_", trait, ".rdata"))
  pip_02 <- data.frame(
  "PIP Threshold" = "0.2",
  "Number of Selected Regions Number of Selected Regions" = length(selected_region_ids),
  "Number of Problematic Genes" = 0,
  "Number of Problematic Regions" = 0,
  "Number of Problematic SNPs" = length(res_ldmismatch$problematic_snps),
  "Number of Flipped SNPs" = length(res_ldmismatch$flipped_snps)
)

}

file_pipthreshold05 <- paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_diagnosis_pipthres05_nozfilter_", trait, ".rdata")

if (file.exists(file_pipthreshold05)) {
  load(file_pipthreshold05)
  pip_05 <- data.frame(
  "PIP Threshold" = "0.5",
  "Number of Selected Regions" = length(selected_region_ids),
  "Number of Problematic Genes" = length(problematic_genes),
  "Number of Problematic Regions" = length(problematic_region_ids),
  "Number of Problematic SNPs" = length(res_ldmismatch$problematic_snps),
  "Number of Flipped SNPs" = length(res_ldmismatch$flipped_snps)
)
}else{

  load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_diagnosis_pipthres05_", trait, ".rdata"))
  pip_05 <- data.frame(
  "PIP Threshold" = "0.5",
  "Number of Selected Regions" = length(selected_region_ids),
  "Number of Problematic Genes" = 0,
  "Number of Problematic Regions" = 0,
  "Number of Problematic SNPs" = length(res_ldmismatch$problematic_snps),
  "Number of Flipped SNPs" = length(res_ldmismatch$flipped_snps)
)

}


results_table <- rbind(pip_02, pip_05)

DT::datatable(results_table,caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black;  font-size:150% ;','LD mismatch diagnosis table for different gene cutoff'),options = list(pageLength = 10) )

Comparing 2 LD mismatch fixing methods

file_ldmismatch_results <- paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_pipthres02_nold_nozfilter_",trait,".rdata")

if(file.exists(file_ldmismatch_results)) {

  load(file_pipthreshold02)

  load(file_ldmismatch_results)
  finemap_res_ldmm_nold <- res_ldmm_nold$finemap_res
  load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_pipthres02_removesnp_nozfilter_",trait,".rdata"))
  finemap_res_ldmm_removesnp <- res_ldmm_removesnp$finemap_res

  finemap_res_ldmm_nold_problematic_gene <- finemap_res_ldmm_nold[finemap_res_ldmm_nold$region_id %in% problematic_region_ids & finemap_res_ldmm_nold$type != "SNP",]
  finemap_res_ldmm_removesnp_problematic_gene <- finemap_res_ldmm_removesnp[finemap_res_ldmm_removesnp$region_id %in% problematic_region_ids & finemap_res_ldmm_removesnp$type != "SNP",]

  merge_2method <- merge(finemap_res_ldmm_nold_problematic_gene,finemap_res_ldmm_removesnp_problematic_gene, by ="id",all.x=T)
  merge_2method$highlight <- ifelse(merge_2method$id %in% problematic_genes, "problematic genes", "good genes")
  merge_2method$susie_pip.y[is.na(merge_2method$susie_pip.y)] <- 1.5
    p1 <- ggplot(data = merge_2method, aes(x = susie_pip.x, y = susie_pip.y, color = highlight, alpha = highlight)) + 
    geom_point() +
    scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +  
    scale_alpha_manual(values = c("problematic genes" = 1, "good genes" = 0.1)) +
    labs(x = "PIP_noLD", y = "PIP_removesnp") + 
    geom_abline(slope = 1, intercept = 0, col = "red") + 
    ggtitle("Problematic regions only, genes only") +
    theme_minimal()

  finemap_res_rm_problematic_gene <- finemap_res_rm[finemap_res_rm$region_id %in% problematic_region_ids & finemap_res_rm$type != "SNP",]

  merge_rm_ldmm_nold <-  merge(finemap_res_rm_problematic_gene,finemap_res_ldmm_nold_problematic_gene, by ="id",all.x=T)
  merge_rm_ldmm_nold$highlight <- ifelse(merge_rm_ldmm_nold$id %in% problematic_genes, "problematic genes", "good genes")
  merge_rm_ldmm_nold$susie_pip.y[is.na(merge_rm_ldmm_nold$susie_pip.y)] <- 1.5
  p2 <- ggplot(data = merge_rm_ldmm_nold, aes(x= susie_pip.x, y= susie_pip.y, color = highlight, alpha = highlight)) + 
    geom_point() +
    labs(x="PIP_after_regionmerge", y="PIP_noLD") + 
    scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +  
    scale_alpha_manual(values = c("problematic genes" = 1, "good genes" = 0.1)) +
    geom_abline(slope = 1, intercept = 0, col ="red") + 
    ggtitle("problematic regions only, genes only") +
    theme_minimal()

  merge_rm_ldmm_removesnp <-  merge(finemap_res_rm_problematic_gene,finemap_res_ldmm_removesnp_problematic_gene, by ="id",all.x =T)
  merge_rm_ldmm_removesnp$highlight <- ifelse(merge_rm_ldmm_removesnp$id %in% problematic_genes, "problematic genes", "good genes")
  merge_rm_ldmm_removesnp$susie_pip.y[is.na(merge_rm_ldmm_removesnp$susie_pip.y)] <- 1.5
  p3 <- ggplot(data = merge_rm_ldmm_removesnp, aes(x= susie_pip.x, y= susie_pip.y, color = highlight, alpha = highlight)) + 
    geom_point() +
    labs(x="PIP_after_regionmerge", y="PIP_removesnp") + 
    scale_alpha_manual(values = c("problematic genes" = 1, "good genes" = 0.1)) +
    scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
    geom_abline(slope = 1, intercept = 0, col ="red") + 
    ggtitle("problematic regions only, genes only") +
    theme_minimal()
  
  print(sprintf("Total number of molecular traits in problematic regions = %s",nrow(merge_rm_ldmm_removesnp)))
  print(sprintf("Number of molecular traits disappeared after removing prblematic SNPs = %s", sum(merge_rm_ldmm_removesnp$susie_pip.y == 1.5)))
  print("The dots showing PIP =1.5 means: these genes were removed since the only QTLs of them are problematic")
  print("Notes: 2 intron overlapped")
  grid.arrange(p1,p2,p3, ncol = 3)



}else{

  print("There's no problematic genes, no need to compare")

}
[1] "Total number of molecular traits in problematic regions = 1643"
[1] "Number of molecular traits disappeared after removing prblematic SNPs = 4"
[1] "The dots showing PIP =1.5 means: these genes were removed since the only QTLs of them are problematic"
[1] "Notes: 2 intron overlapped"

Version Author Date
65c1ad1 XSun 2024-12-19

Comparing z-scores and susie_pip

if(file.exists(file_ldmismatch_results)){

  finemap_res_origin <- ctwas_res_origin$finemap_res
  finemap_res_origin_gene <- finemap_res_origin[finemap_res_origin$type != "SNP",]
  finemap_res_origin_gene$highlight <- ifelse(finemap_res_origin_gene$id %in% problematic_genes, "problematic genes", "good genes")

  p1 <- ggplot(data = finemap_res_origin_gene, aes(x= abs(z), y= susie_pip, color = highlight)) +
    geom_point() +
    scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
    ggtitle("Original ctwas results") +
    theme_minimal()


  finemap_res_rm_gene <- finemap_res_rm[finemap_res_rm$type != "SNP",]
  finemap_res_rm_gene$highlight <- ifelse(finemap_res_rm_gene$id %in% problematic_genes, "problematic genes", "good genes")

  p2 <- ggplot(data = finemap_res_rm_gene, aes(x= abs(z), y= susie_pip, color = highlight)) +
    geom_point() +
    scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
    ggtitle("After region merge") +
    theme_minimal()


  finemap_res_ldmm_nold_gene <- finemap_res_ldmm_nold[finemap_res_ldmm_nold$type !="SNP",]
  finemap_res_ldmm_nold_gene$highlight <- ifelse(finemap_res_ldmm_nold_gene$id %in% problematic_genes, "problematic genes", "good genes")

  p3 <- ggplot(data = finemap_res_ldmm_nold_gene, aes(x= abs(z), y= susie_pip, color = highlight)) +
    geom_point() +
    scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
    ggtitle("After LD mismatch fixed -- noLD") +
    theme_minimal()

  finemap_res_ldmm_removesnp_gene <- finemap_res_ldmm_removesnp[finemap_res_ldmm_removesnp$type !="SNP",]
  finemap_res_ldmm_removesnp_gene$highlight <- ifelse(finemap_res_ldmm_removesnp_gene$id %in% problematic_genes, "problematic genes", "good genes")

  p4 <- ggplot(data = finemap_res_ldmm_removesnp_gene, aes(x= abs(z), y= susie_pip, color = highlight)) +
    geom_point() +
    scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
    ggtitle("After LD mismatch fixed -- SNP removed") +
    theme_minimal()


  grid.arrange(p1,p2,p3,p4, ncol = 4)

  print("L - estimated in region merge step")
  print(updated_data_res_regionmerge$updated_region_L[problematic_region_ids])
  load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_pipthres02_removesnp_rescreenregion_nozfilter_",trait,".rdata"))
  print("L - re-estimated after updating z_scores, region data")
  print(screen_res$screened_region_L)
}else{

  print("There's no problematic genes")

  finemap_res_origin <- ctwas_res_origin$finemap_res
  finemap_res_origin_gene <- finemap_res_origin[finemap_res_origin$type != "SNP",]

  p1 <- ggplot(data = finemap_res_origin_gene, aes(x= abs(z), y= susie_pip)) +
    geom_point() +
    ggtitle("Original ctwas results") +
    theme_minimal()


  finemap_res_rm_gene <- finemap_res_rm[finemap_res_rm$type != "SNP",]

  p2 <- ggplot(data = finemap_res_rm_gene, aes(x= abs(z), y= susie_pip)) +
    geom_point() +
    ggtitle("After region merge") +
    theme_minimal()

  grid.arrange(p1,p2, ncol = 2)
}

Version Author Date
65c1ad1 XSun 2024-12-19
[1] "L - estimated in region merge step"
19_9127717_13360313 
                  5 
[1] "L - re-estimated after updating z_scores, region data"
19_9127717_13360313 
                  5 
print("Zoom in the z<15 part")
[1] "Zoom in the z<15 part"
if(file.exists(file_ldmismatch_results)){
  

  finemap_res_origin_gene_prob <- finemap_res_origin_gene[finemap_res_origin_gene$highlight == "problematic genes",]
  p1 <- ggplot(data = finemap_res_origin_gene_prob, 
        aes(x = abs(z), y = susie_pip, color = highlight, alpha = highlight)) + 
        geom_point() +
        scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
        scale_alpha_manual(values = c("problematic genes" = 1, "good genes" = 0.01)) +
        ggtitle("Original ctwas results") +
        theme_minimal() +
        xlim(0, 15)

  finemap_res_rm_gene_prob <- finemap_res_rm_gene[finemap_res_rm_gene$highlight == "problematic genes",]
  p2 <- ggplot(data = finemap_res_rm_gene_prob, 
        aes(x = abs(z), y = susie_pip, color = highlight, alpha = highlight)) + 
        geom_point() +
        scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
        scale_alpha_manual(values = c("problematic genes" = 1, "good genes" = 0.01)) +
        ggtitle("After region merge") +
        theme_minimal() +
        xlim(0, 15)

  finemap_res_ldmm_nold_gene_prob <- finemap_res_ldmm_nold_gene[finemap_res_ldmm_nold_gene$highlight == "problematic genes",]
  p3 <- ggplot(data = finemap_res_ldmm_nold_gene_prob, 
        aes(x = abs(z), y = susie_pip, color = highlight, alpha = highlight)) + 
        geom_point() +
        scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
        scale_alpha_manual(values = c("problematic genes" = 1, "good genes" = 0.01)) +
        ggtitle("After LD mismatch fixed -- noLD") +
        theme_minimal() +
        xlim(0, 15)

  finemap_res_ldmm_removesnp_gene_prob <-   finemap_res_ldmm_removesnp_gene[finemap_res_ldmm_removesnp_gene$highlight == "problematic genes",]
  p4 <- ggplot(data = finemap_res_ldmm_removesnp_gene_prob, 
        aes(x = abs(z), y = susie_pip, color = highlight, alpha = highlight)) + 
        geom_point() +
        scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
        scale_alpha_manual(values = c("problematic genes" = 1, "good genes" = 0.01)) +
        ggtitle("After LD mismatch fixed -- SNP removed") +
        theme_minimal() +
        xlim(0, 15)
  
  grid.arrange(p1,p2,p3,p4, ncol = 4)
  
}else{

  print("There's no problematic genes")

  finemap_res_origin <- ctwas_res_origin$finemap_res
  finemap_res_origin_gene <- finemap_res_origin[finemap_res_origin$type != "SNP",]

  p1 <- ggplot(data = finemap_res_origin_gene, aes(x= abs(z), y= susie_pip)) +
    geom_point() +
    ggtitle("Original ctwas results") +
    theme_minimal()+
    xlim(0, 15)


  finemap_res_rm_gene <- finemap_res_rm[finemap_res_rm$type != "SNP",]

  p2 <- ggplot(data = finemap_res_rm_gene, aes(x= abs(z), y= susie_pip)) +
    geom_point() +
    ggtitle("After region merge") +
    theme_minimal()+
    xlim(0, 15)

  grid.arrange(p1,p2, ncol = 2)
}

Version Author Date
65c1ad1 XSun 2024-12-19

Examples for LD-mismatch fixing

weights_origin <- readRDS(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/results/",trait,"/",trait,".preprocessed.weights.RDS"))

load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_pipthres02_removesnp_weights_updated_nozfilter_",trait,".rdata"))

region_id <- "19_9127717_13360313"

finemap_res_rm <- anno_finemap_res(finemap_res_rm,
                                          snp_map = updated_data_res_regionmerge[["updated_snp_map"]],
                                          mapping_table = mapping_two,
                                          add_gene_annot = TRUE,
                                          map_by = "molecular_id",
                                          drop_unmapped = TRUE,
                                          add_position = TRUE,
                                          use_gene_pos = "mid")
2024-12-19 14:46:37 INFO::Annotating fine-mapping result ...
2024-12-19 14:46:37 INFO::Map molecular traits to genes
2024-12-19 14:46:37 INFO::Split PIPs for molecular traits mapped to multiple genes
2024-12-19 14:46:42 INFO::Add gene positions
2024-12-19 14:46:42 INFO::Add SNP positions
finemap_res_ldmm_nold <- anno_finemap_res(finemap_res_ldmm_nold,
                                          snp_map = updated_data_res_regionmerge[["updated_snp_map"]],
                                          mapping_table = mapping_two,
                                          add_gene_annot = TRUE,
                                          map_by = "molecular_id",
                                          drop_unmapped = TRUE,
                                          add_position = TRUE,
                                          use_gene_pos = "mid")
2024-12-19 14:46:45 INFO::Annotating fine-mapping result ...
2024-12-19 14:46:45 INFO::Map molecular traits to genes
2024-12-19 14:46:46 INFO::Split PIPs for molecular traits mapped to multiple genes
2024-12-19 14:46:49 INFO::Add gene positions
2024-12-19 14:46:49 INFO::Add SNP positions
finemap_res_ldmm_removesnp <- anno_finemap_res(finemap_res_ldmm_removesnp,
                                   snp_map = updated_data_res_regionmerge[["updated_snp_map"]],
                                   mapping_table = mapping_two,
                                   add_gene_annot = TRUE,
                                   map_by = "molecular_id",
                                   drop_unmapped = TRUE,
                                   add_position = TRUE,
                                   use_gene_pos = "mid")
2024-12-19 14:46:52 INFO::Annotating fine-mapping result ...
2024-12-19 14:46:52 INFO::Map molecular traits to genes
2024-12-19 14:46:54 INFO::Split PIPs for molecular traits mapped to multiple genes
2024-12-19 14:46:57 INFO::Add gene positions
2024-12-19 14:46:57 INFO::Add SNP positions
finemap_res_rm_gene <- finemap_res_rm[finemap_res_rm$type != "SNP",]
finemap_res_ldmm_removesnp_gene <- finemap_res_ldmm_removesnp[finemap_res_ldmm_removesnp$type !="SNP",]



print("locus plot -- after region merge")
[1] "locus plot -- after region merge"
make_locusplot(finemap_res_rm,
               region_id = region_id,
               ens_db = ens_db,
               weights = weights_origin,
               highlight_pip = 0.8,
               filter_protein_coding_genes = TRUE,
               filter_cs = TRUE,
               color_pval_by = "cs",
               color_pip_by = "cs",panel.heights = c(4,4,1,1))
2024-12-19 14:47:01 INFO::Limit to protein coding genes
2024-12-19 14:47:01 INFO::focal id: intron_19_11120522_11123174|Liver_sQTL
2024-12-19 14:47:01 INFO::focal molecular trait: LDLR Liver sQTL
2024-12-19 14:47:01 INFO::Range of locus: chr19:9127860-13930432
2024-12-19 14:47:01 INFO::focal molecular trait QTL positions: 11120205,11120527
2024-12-19 14:47:01 INFO::Limit PIPs to credible sets

print("locus plot -- LD mismatch: no LD")
[1] "locus plot -- LD mismatch: no LD"
make_locusplot(finemap_res_ldmm_nold,
               region_id = region_id,
               ens_db = ens_db,
               weights = weights_origin,
               highlight_pip = 0.8,
               filter_protein_coding_genes = TRUE,
               filter_cs = TRUE,
               color_pval_by = "cs",
               color_pip_by = "cs",panel.heights = c(4,4,1,1))
2024-12-19 14:47:06 INFO::Limit to protein coding genes
2024-12-19 14:47:06 INFO::focal id: ENSG00000197256.10|Liver_eQTL
2024-12-19 14:47:06 INFO::focal molecular trait: KANK2 Liver eQTL
2024-12-19 14:47:06 INFO::Range of locus: chr19:9127860-13930432
2024-12-19 14:47:06 INFO::focal molecular trait QTL positions: 11197621
2024-12-19 14:47:06 INFO::Limit PIPs to credible sets

print("locus plot -- LD mismatch: snp removed")
[1] "locus plot -- LD mismatch: snp removed"
make_locusplot(finemap_res_ldmm_removesnp,
               region_id = region_id,
               ens_db = ens_db,
               weights = weights_updated,
               highlight_pip = 0.8,
               filter_protein_coding_genes = TRUE,
               filter_cs = TRUE,
               color_pval_by = "cs",
               color_pip_by = "cs",panel.heights = c(4,4,1,1))
2024-12-19 14:47:11 INFO::Limit to protein coding genes
2024-12-19 14:47:11 INFO::focal id: intron_19_11116212_11120092|Liver_sQTL
2024-12-19 14:47:11 INFO::focal molecular trait: LDLR Liver sQTL
2024-12-19 14:47:11 INFO::Range of locus: chr19:9127860-13930432
2024-12-19 14:47:11 INFO::focal molecular trait QTL positions: 11116394
2024-12-19 14:47:11 INFO::Limit PIPs to credible sets

finemap_res_rm_gene_region <- finemap_res_rm_gene[finemap_res_rm_gene$region_id == region_id,]
finemap_res_ldmm_removesnp_gene_region <- finemap_res_ldmm_removesnp_gene[finemap_res_ldmm_removesnp_gene$region_id == region_id,]
merged_region_gene <- merge(finemap_res_rm_gene_region,finemap_res_ldmm_removesnp_gene_region,by = "id",all.x=T)
merged_region_gene <- merged_region_gene[,c("id","gene_name.x","z.x","susie_pip.x","cs.x","z.y","susie_pip.y","cs.y")]
colnames(merged_region_gene) <- c("id","gene_name","z_regionmerge","susie_pip_regionmerge","cs_regionmerge","z_ldmismatch","susie_pip_ldmismatch","cs_ldmismatch")

merged_region_gene$highlight <- ifelse(merged_region_gene$id %in% problematic_genes, "problematic genes", "good genes")

merged_region_gene$z_ldmismatch[is.na(merged_region_gene$z_ldmismatch)] <- 10
print("The dots showing z_ldmismatch =10 means: these genes were removed since the only QTLs of them are problematic")
[1] "The dots showing z_ldmismatch =10 means: these genes were removed since the only QTLs of them are problematic"
ggplot(data = merged_region_gene, aes(x= z_regionmerge, y= z_ldmismatch, color = highlight, alpha = highlight)) +
  geom_point() +
  scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
  scale_alpha_manual(values = c("problematic genes" = 1, "good genes" = 0.3)) +
  ggtitle("Comparing z-scores before/after removing the problematic SNPs") +
  theme_minimal()

DT::datatable(merged_region_gene[merged_region_gene$z_ldmismatch != merged_region_gene$z_regionmerge,],caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black;  font-size:150% ;','Genes with different z before / after removing the problematic SNPs'),options = list(pageLength = 10) )

IBD-ebi-a-GCST004131

trait <- "IBD-ebi-a-GCST004131"

results_dir_origin <- paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/results/",trait,"/")
ctwas_res_origin <- readRDS(paste0(results_dir_origin,trait,".ctwas.res.RDS"))

finemap_res_origin <- ctwas_res_origin$finemap_res

Region merge

load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/rm_",trait,".rdata"))

finemap_res_rm <- res_regionmerge$finemap_res
finemap_res_rm_boundary_genes <- finemap_res_rm[finemap_res_rm$id %in%selected_boundary_genes$id,]
finemap_res_rm_boundary_genes_pip <- finemap_res_rm_boundary_genes[,c("id","susie_pip","cs")]


finemap_res_origin_boundary_genes <- finemap_res_origin[finemap_res_origin$id %in%selected_boundary_genes$id,]
finemap_res_origin_boundary_genes_pip <- finemap_res_origin_boundary_genes[,c("id","susie_pip","cs")]

finemap_res_compare_regionmerge <- merge(finemap_res_origin_boundary_genes_pip,finemap_res_rm_boundary_genes_pip, by = "id")
colnames(finemap_res_compare_regionmerge) <- c("id","susie_pip_origin","cs_origin","susie_pip_reginmerge","cs_reginmerge")

DT::datatable(finemap_res_compare_regionmerge,caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black;  font-size:150% ;','Selected boundary genes (susie_pip > 0.5)'),options = list(pageLength = 10) )

LD-mismatch

Diagnosis

file_pipthreshold02 <- paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_diagnosis_pipthres02_nozfilter_", trait, ".rdata")

if (file.exists(file_pipthreshold02)) {
  load(file_pipthreshold02)
  pip_02 <- data.frame(
  "PIP Threshold" = "0.2",
  "Number of Selected Regions" = length(selected_region_ids),
  "Number of Problematic Genes" = length(problematic_genes),
  "Number of Problematic Regions" = length(problematic_region_ids),
  "Number of Problematic SNPs" = length(res_ldmismatch$problematic_snps),
  "Number of Flipped SNPs" = length(res_ldmismatch$flipped_snps)
)
}else{

  load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_diagnosis_pipthres02_", trait, ".rdata"))
  pip_02 <- data.frame(
  "PIP Threshold" = "0.2",
  "Number of Selected Regions Number of Selected Regions" = length(selected_region_ids),
  "Number of Problematic Genes" = 0,
  "Number of Problematic Regions" = 0,
  "Number of Problematic SNPs" = length(res_ldmismatch$problematic_snps),
  "Number of Flipped SNPs" = length(res_ldmismatch$flipped_snps)
)

}

file_pipthreshold05 <- paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_diagnosis_pipthres05_nozfilter_", trait, ".rdata")

if (file.exists(file_pipthreshold05)) {
  load(file_pipthreshold05)
  pip_05 <- data.frame(
  "PIP Threshold" = "0.5",
  "Number of Selected Regions" = length(selected_region_ids),
  "Number of Problematic Genes" = length(problematic_genes),
  "Number of Problematic Regions" = length(problematic_region_ids),
  "Number of Problematic SNPs" = length(res_ldmismatch$problematic_snps),
  "Number of Flipped SNPs" = length(res_ldmismatch$flipped_snps)
)
}else{

  load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_diagnosis_pipthres05_", trait, ".rdata"))
  pip_05 <- data.frame(
  "PIP Threshold" = "0.5",
  "Number of Selected Regions" = length(selected_region_ids),
  "Number of Problematic Genes" = 0,
  "Number of Problematic Regions" = 0,
  "Number of Problematic SNPs" = length(res_ldmismatch$problematic_snps),
  "Number of Flipped SNPs" = length(res_ldmismatch$flipped_snps)
)

}


results_table <- rbind(pip_02, pip_05)

DT::datatable(results_table,caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black;  font-size:150% ;','LD mismatch diagnosis table for different gene cutoff'),options = list(pageLength = 10) )

Comparing 2 LD mismatch fixing methods

file_ldmismatch_results <- paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_pipthres02_nold_nozfilter_",trait,".rdata")

if(file.exists(file_ldmismatch_results)) {

  load(file_pipthreshold02)

  load(file_ldmismatch_results)
  finemap_res_ldmm_nold <- res_ldmm_nold$finemap_res
  load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_pipthres02_removesnp_nozfilter_",trait,".rdata"))
  finemap_res_ldmm_removesnp <- res_ldmm_removesnp$finemap_res

  finemap_res_ldmm_nold_problematic_gene <- finemap_res_ldmm_nold[finemap_res_ldmm_nold$region_id %in% problematic_region_ids & finemap_res_ldmm_nold$type != "SNP",]
  finemap_res_ldmm_removesnp_problematic_gene <- finemap_res_ldmm_removesnp[finemap_res_ldmm_removesnp$region_id %in% problematic_region_ids & finemap_res_ldmm_removesnp$type != "SNP",]

  merge_2method <- merge(finemap_res_ldmm_nold_problematic_gene,finemap_res_ldmm_removesnp_problematic_gene, by ="id",all.x=T)
  merge_2method$highlight <- ifelse(merge_2method$id %in% problematic_genes, "problematic genes", "good genes")
  merge_2method$susie_pip.y[is.na(merge_2method$susie_pip.y)] <- 1.5
  p1 <- ggplot(data = merge_2method, aes(x = susie_pip.x, y = susie_pip.y, color = highlight, alpha = highlight)) + 
    geom_point() +
    scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +  
    scale_alpha_manual(values = c("problematic genes" = 1, "good genes" = 0.1)) +
    labs(x = "PIP_noLD", y = "PIP_removesnp") + 
    geom_abline(slope = 1, intercept = 0, col = "red") + 
    ggtitle("Problematic regions only, genes only") +
    theme_minimal()

  finemap_res_rm_problematic_gene <- finemap_res_rm[finemap_res_rm$region_id %in% problematic_region_ids & finemap_res_rm$type != "SNP",]

  merge_rm_ldmm_nold <-  merge(finemap_res_rm_problematic_gene,finemap_res_ldmm_nold_problematic_gene, by ="id",all.x=T)
  merge_rm_ldmm_nold$highlight <- ifelse(merge_rm_ldmm_nold$id %in% problematic_genes, "problematic genes", "good genes")
  merge_rm_ldmm_nold$susie_pip.y[is.na(merge_rm_ldmm_nold$susie_pip.y)] <- 1.5
  p2 <- ggplot(data = merge_rm_ldmm_nold, aes(x= susie_pip.x, y= susie_pip.y, color = highlight, alpha = highlight)) + 
    geom_point() +
    labs(x="PIP_after_regionmerge", y="PIP_noLD") + 
    scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +  
    scale_alpha_manual(values = c("problematic genes" = 1, "good genes" = 0.1)) +
    geom_abline(slope = 1, intercept = 0, col ="red") + 
    ggtitle("problematic regions only, genes only") +
    theme_minimal()

  merge_rm_ldmm_removesnp <-  merge(finemap_res_rm_problematic_gene,finemap_res_ldmm_removesnp_problematic_gene, by ="id",all.x =T)
  merge_rm_ldmm_removesnp$highlight <- ifelse(merge_rm_ldmm_removesnp$id %in% problematic_genes, "problematic genes", "good genes")
  merge_rm_ldmm_removesnp$susie_pip.y[is.na(merge_rm_ldmm_removesnp$susie_pip.y)] <- 1.5
  p3 <- ggplot(data = merge_rm_ldmm_removesnp, aes(x= susie_pip.x, y= susie_pip.y, color = highlight, alpha = highlight)) + 
    geom_point() +
    labs(x="PIP_after_regionmerge", y="PIP_removesnp") + 
    scale_alpha_manual(values = c("problematic genes" = 1, "good genes" = 0.1)) +
    scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
    geom_abline(slope = 1, intercept = 0, col ="red") + 
    ggtitle("problematic regions only, genes only") +
    theme_minimal()

  print(sprintf("Total number of molecular traits in problematic regions = %s",nrow(merge_rm_ldmm_removesnp)))
  print(sprintf("Number of molecular traits disappeared after removing prblematic SNPs = %s", sum(merge_rm_ldmm_removesnp$susie_pip.y == 1.5)))
  print("The dots showing PIP =1.5 means: these genes were removed since the only QTLs of them are problematic")
  grid.arrange(p1,p2,p3, ncol = 3)



}else{

  print("There's no problematic genes, no need to compare")

}
[1] "Total number of molecular traits in problematic regions = 201"
[1] "Number of molecular traits disappeared after removing prblematic SNPs = 1"
[1] "The dots showing PIP =1.5 means: these genes were removed since the only QTLs of them are problematic"

Version Author Date
65c1ad1 XSun 2024-12-19

Comparing z-scores and susie_pip

if(file.exists(file_ldmismatch_results)){

  finemap_res_origin <- ctwas_res_origin$finemap_res
  finemap_res_origin_gene <- finemap_res_origin[finemap_res_origin$type != "SNP",]
  finemap_res_origin_gene$highlight <- ifelse(finemap_res_origin_gene$id %in% problematic_genes, "problematic genes", "good genes")

  p1 <- ggplot(data = finemap_res_origin_gene, aes(x= abs(z), y= susie_pip, color = highlight)) +
    geom_point() +
    scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
    ggtitle("Original ctwas results") +
    theme_minimal()


  finemap_res_rm_gene <- finemap_res_rm[finemap_res_rm$type != "SNP",]
  finemap_res_rm_gene$highlight <- ifelse(finemap_res_rm_gene$id %in% problematic_genes, "problematic genes", "good genes")

  p2 <- ggplot(data = finemap_res_rm_gene, aes(x= abs(z), y= susie_pip, color = highlight)) +
    geom_point() +
    scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
    ggtitle("After region merge") +
    theme_minimal()


  finemap_res_ldmm_nold_gene <- finemap_res_ldmm_nold[finemap_res_ldmm_nold$type !="SNP",]
  finemap_res_ldmm_nold_gene$highlight <- ifelse(finemap_res_ldmm_nold_gene$id %in% problematic_genes, "problematic genes", "good genes")

  p3 <- ggplot(data = finemap_res_ldmm_nold_gene, aes(x= abs(z), y= susie_pip, color = highlight)) +
    geom_point() +
    scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
    ggtitle("After LD mismatch fixed -- noLD") +
    theme_minimal()

  finemap_res_ldmm_removesnp_gene <- finemap_res_ldmm_removesnp[finemap_res_ldmm_removesnp$type !="SNP",]
  finemap_res_ldmm_removesnp_gene$highlight <- ifelse(finemap_res_ldmm_removesnp_gene$id %in% problematic_genes, "problematic genes", "good genes")

  p4 <- ggplot(data = finemap_res_ldmm_removesnp_gene, aes(x= abs(z), y= susie_pip, color = highlight)) +
    geom_point() +
    scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
    ggtitle("After LD mismatch fixed -- SNP removed") +
    theme_minimal()


  grid.arrange(p1,p2,p3,p4, ncol = 4)

  print("L - estimated in region merge step")
  print(updated_data_res_regionmerge$updated_region_L[problematic_region_ids])
  load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_pipthres02_removesnp_rescreenregion_nozfilter_",trait,".rdata"))
  print("L - re-estimated after updating z_scores, region data")
  print(screen_res$screened_region_L)
}else{

  print("There's no problematic genes")

  finemap_res_origin <- ctwas_res_origin$finemap_res
  finemap_res_origin_gene <- finemap_res_origin[finemap_res_origin$type != "SNP",]

  p1 <- ggplot(data = finemap_res_origin_gene, aes(x= abs(z), y= susie_pip)) +
    geom_point() +
    ggtitle("Original ctwas results") +
    theme_minimal()


  finemap_res_rm_gene <- finemap_res_rm[finemap_res_rm$type != "SNP",]

  p2 <- ggplot(data = finemap_res_rm_gene, aes(x= abs(z), y= susie_pip)) +
    geom_point() +
    ggtitle("After region merge") +
    theme_minimal()

  grid.arrange(p1,p2, ncol = 2)
}

[1] "L - estimated in region merge step"
5_96627815_97979897 
                  1 
[1] "L - re-estimated after updating z_scores, region data"
5_96627815_97979897 
                  1 
print("Zoom in the z<15 part")
[1] "Zoom in the z<15 part"
if(file.exists(file_ldmismatch_results)){
  

  finemap_res_origin_gene_prob <- finemap_res_origin_gene[finemap_res_origin_gene$highlight == "problematic genes",]
  p1 <- ggplot(data = finemap_res_origin_gene_prob, 
        aes(x = abs(z), y = susie_pip, color = highlight, alpha = highlight)) + 
        geom_point() +
        scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
        scale_alpha_manual(values = c("problematic genes" = 1, "good genes" = 0.01)) +
        ggtitle("Original ctwas results") +
        theme_minimal() +
        xlim(0, 15)

  finemap_res_rm_gene_prob <- finemap_res_rm_gene[finemap_res_rm_gene$highlight == "problematic genes",]
  p2 <- ggplot(data = finemap_res_rm_gene_prob, 
        aes(x = abs(z), y = susie_pip, color = highlight, alpha = highlight)) + 
        geom_point() +
        scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
        scale_alpha_manual(values = c("problematic genes" = 1, "good genes" = 0.01)) +
        ggtitle("After region merge") +
        theme_minimal() +
        xlim(0, 15)

  finemap_res_ldmm_nold_gene_prob <- finemap_res_ldmm_nold_gene[finemap_res_ldmm_nold_gene$highlight == "problematic genes",]
  p3 <- ggplot(data = finemap_res_ldmm_nold_gene_prob, 
        aes(x = abs(z), y = susie_pip, color = highlight, alpha = highlight)) + 
        geom_point() +
        scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
        scale_alpha_manual(values = c("problematic genes" = 1, "good genes" = 0.01)) +
        ggtitle("After LD mismatch fixed -- noLD") +
        theme_minimal() +
        xlim(0, 15)

  finemap_res_ldmm_removesnp_gene_prob <-   finemap_res_ldmm_removesnp_gene[finemap_res_ldmm_removesnp_gene$highlight == "problematic genes",]
  p4 <- ggplot(data = finemap_res_ldmm_removesnp_gene_prob, 
        aes(x = abs(z), y = susie_pip, color = highlight, alpha = highlight)) + 
        geom_point() +
        scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
        scale_alpha_manual(values = c("problematic genes" = 1, "good genes" = 0.01)) +
        ggtitle("After LD mismatch fixed -- SNP removed") +
        theme_minimal() +
        xlim(0, 15)
  
  grid.arrange(p1,p2,p3,p4, ncol = 4)
  
}else{

  print("There's no problematic genes")

  finemap_res_origin <- ctwas_res_origin$finemap_res
  finemap_res_origin_gene <- finemap_res_origin[finemap_res_origin$type != "SNP",]

  p1 <- ggplot(data = finemap_res_origin_gene, aes(x= abs(z), y= susie_pip)) +
    geom_point() +
    ggtitle("Original ctwas results") +
    theme_minimal()+
    xlim(0, 15)


  finemap_res_rm_gene <- finemap_res_rm[finemap_res_rm$type != "SNP",]

  p2 <- ggplot(data = finemap_res_rm_gene, aes(x= abs(z), y= susie_pip)) +
    geom_point() +
    ggtitle("After region merge") +
    theme_minimal()+
    xlim(0, 15)

  grid.arrange(p1,p2, ncol = 2)
}

SBP-ukb-a-360

trait <- "SBP-ukb-a-360"

results_dir_origin <- paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/results/",trait,"/")
ctwas_res_origin <- readRDS(paste0(results_dir_origin,trait,".ctwas.res.RDS"))

finemap_res_origin <- ctwas_res_origin$finemap_res

Region merge

load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/rm_",trait,".rdata"))

finemap_res_rm <- res_regionmerge$finemap_res
finemap_res_rm_boundary_genes <- finemap_res_rm[finemap_res_rm$id %in%selected_boundary_genes$id,]
finemap_res_rm_boundary_genes_pip <- finemap_res_rm_boundary_genes[,c("id","susie_pip","cs")]


finemap_res_origin_boundary_genes <- finemap_res_origin[finemap_res_origin$id %in%selected_boundary_genes$id,]
finemap_res_origin_boundary_genes_pip <- finemap_res_origin_boundary_genes[,c("id","susie_pip","cs")]

finemap_res_compare_regionmerge <- merge(finemap_res_origin_boundary_genes_pip,finemap_res_rm_boundary_genes_pip, by = "id")
colnames(finemap_res_compare_regionmerge) <- c("id","susie_pip_origin","cs_origin","susie_pip_reginmerge","cs_reginmerge")

DT::datatable(finemap_res_compare_regionmerge,caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black;  font-size:150% ;','Selected boundary genes (susie_pip > 0.5)'),options = list(pageLength = 10) )

LD-mismatch

Diagnosis

file_pipthreshold02 <- paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_diagnosis_pipthres02_nozfilter_", trait, ".rdata")

if (file.exists(file_pipthreshold02)) {
  load(file_pipthreshold02)
  pip_02 <- data.frame(
  "PIP Threshold" = "0.2",
  "Number of Selected Regions" = length(selected_region_ids),
  "Number of Problematic Genes" = length(problematic_genes),
  "Number of Problematic Regions" = length(problematic_region_ids),
  "Number of Problematic SNPs" = length(res_ldmismatch$problematic_snps),
  "Number of Flipped SNPs" = length(res_ldmismatch$flipped_snps)
)
}else{

  load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_diagnosis_pipthres02_", trait, ".rdata"))
  pip_02 <- data.frame(
  "PIP Threshold" = "0.2",
  "Number of Selected Regions Number of Selected Regions" = length(selected_region_ids),
  "Number of Problematic Genes" = 0,
  "Number of Problematic Regions" = 0,
  "Number of Problematic SNPs" = length(res_ldmismatch$problematic_snps),
  "Number of Flipped SNPs" = length(res_ldmismatch$flipped_snps)
)

}

file_pipthreshold05 <- paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_diagnosis_pipthres05_nozfilter_", trait, ".rdata")

if (file.exists(file_pipthreshold05)) {
  load(file_pipthreshold05)
  pip_05 <- data.frame(
  "PIP Threshold" = "0.5",
  "Number of Selected Regions" = length(selected_region_ids),
  "Number of Problematic Genes" = length(problematic_genes),
  "Number of Problematic Regions" = length(problematic_region_ids),
  "Number of Problematic SNPs" = length(res_ldmismatch$problematic_snps),
  "Number of Flipped SNPs" = length(res_ldmismatch$flipped_snps)
)
}else{

  load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_diagnosis_pipthres05_", trait, ".rdata"))
  pip_05 <- data.frame(
  "PIP Threshold" = "0.5",
  "Number of Selected Regions" = length(selected_region_ids),
  "Number of Problematic Genes" = 0,
  "Number of Problematic Regions" = 0,
  "Number of Problematic SNPs" = length(res_ldmismatch$problematic_snps),
  "Number of Flipped SNPs" = length(res_ldmismatch$flipped_snps)
)

}


results_table <- rbind(pip_02, pip_05)

DT::datatable(results_table,caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black;  font-size:150% ;','LD mismatch diagnosis table for different gene cutoff'),options = list(pageLength = 10) )

Comparing 2 LD mismatch fixing methods

file_ldmismatch_results <- paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_pipthres02_nold_nozfilter_",trait,".rdata")

if(file.exists(file_ldmismatch_results)) {

  load(file_pipthreshold02)

  load(file_ldmismatch_results)
  finemap_res_ldmm_nold <- res_ldmm_nold$finemap_res
  load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_pipthres02_removesnp_nozfilter_",trait,".rdata"))
  finemap_res_ldmm_removesnp <- res_ldmm_removesnp$finemap_res

  finemap_res_ldmm_nold_problematic_gene <- finemap_res_ldmm_nold[finemap_res_ldmm_nold$region_id %in% problematic_region_ids & finemap_res_ldmm_nold$type != "SNP",]
  finemap_res_ldmm_removesnp_problematic_gene <- finemap_res_ldmm_removesnp[finemap_res_ldmm_removesnp$region_id %in% problematic_region_ids & finemap_res_ldmm_removesnp$type != "SNP",]

  merge_2method <- merge(finemap_res_ldmm_nold_problematic_gene,finemap_res_ldmm_removesnp_problematic_gene, by ="id",all.x=T)
  merge_2method$highlight <- ifelse(merge_2method$id %in% problematic_genes, "problematic genes", "good genes")
  merge_2method$susie_pip.y[is.na(merge_2method$susie_pip.y)] <- 1.5
  p1 <- ggplot(data = merge_2method, aes(x = susie_pip.x, y = susie_pip.y, color = highlight, alpha = highlight)) + 
    geom_point() +
    scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +  
    scale_alpha_manual(values = c("problematic genes" = 1, "good genes" = 0.1)) +
    labs(x = "PIP_noLD", y = "PIP_removesnp") + 
    geom_abline(slope = 1, intercept = 0, col = "red") + 
    ggtitle("Problematic regions only, genes only") +
    theme_minimal()

  finemap_res_rm_problematic_gene <- finemap_res_rm[finemap_res_rm$region_id %in% problematic_region_ids & finemap_res_rm$type != "SNP",]

  merge_rm_ldmm_nold <-  merge(finemap_res_rm_problematic_gene,finemap_res_ldmm_nold_problematic_gene, by ="id",all.x=T)
  merge_rm_ldmm_nold$highlight <- ifelse(merge_rm_ldmm_nold$id %in% problematic_genes, "problematic genes", "good genes")
  merge_rm_ldmm_nold$susie_pip.y[is.na(merge_rm_ldmm_nold$susie_pip.y)] <- 1.5
  p2 <- ggplot(data = merge_rm_ldmm_nold, aes(x= susie_pip.x, y= susie_pip.y, color = highlight, alpha = highlight)) + 
    geom_point() +
    labs(x="PIP_after_regionmerge", y="PIP_noLD") + 
    scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +  
    scale_alpha_manual(values = c("problematic genes" = 1, "good genes" = 0.1)) +
    geom_abline(slope = 1, intercept = 0, col ="red") + 
    ggtitle("problematic regions only, genes only") +
    theme_minimal()

  merge_rm_ldmm_removesnp <-  merge(finemap_res_rm_problematic_gene,finemap_res_ldmm_removesnp_problematic_gene, by ="id",all.x =T)
  merge_rm_ldmm_removesnp$highlight <- ifelse(merge_rm_ldmm_removesnp$id %in% problematic_genes, "problematic genes", "good genes")
  merge_rm_ldmm_removesnp$susie_pip.y[is.na(merge_rm_ldmm_removesnp$susie_pip.y)] <- 1.5
  p3 <- ggplot(data = merge_rm_ldmm_removesnp, aes(x= susie_pip.x, y= susie_pip.y, color = highlight, alpha = highlight)) + 
    geom_point() +
    labs(x="PIP_after_regionmerge", y="PIP_removesnp") + 
    scale_alpha_manual(values = c("problematic genes" = 1, "good genes" = 0.1)) +
    scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
    geom_abline(slope = 1, intercept = 0, col ="red") + 
    ggtitle("problematic regions only, genes only") +
    theme_minimal()

  print(sprintf("Total number of molecular traits in problematic regions = %s",nrow(merge_rm_ldmm_removesnp)))
  print(sprintf("Number of molecular traits disappeared after removing prblematic SNPs = %s", sum(merge_rm_ldmm_removesnp$susie_pip.y == 1.5)))
  print("The dots showing PIP =1.5 means: these genes were removed since the only QTLs of them are problematic")
  grid.arrange(p1,p2,p3, ncol = 3)



}else{

  print("There's no problematic genes, no need to compare")

}
[1] "Total number of molecular traits in problematic regions = 229"
[1] "Number of molecular traits disappeared after removing prblematic SNPs = 4"
[1] "The dots showing PIP =1.5 means: these genes were removed since the only QTLs of them are problematic"

Version Author Date
65c1ad1 XSun 2024-12-19

Comparing z-scores and susie_pip

if(file.exists(file_ldmismatch_results)){

  finemap_res_origin <- ctwas_res_origin$finemap_res
  finemap_res_origin_gene <- finemap_res_origin[finemap_res_origin$type != "SNP",]
  finemap_res_origin_gene$highlight <- ifelse(finemap_res_origin_gene$id %in% problematic_genes, "problematic genes", "good genes")

  p1 <- ggplot(data = finemap_res_origin_gene, aes(x= abs(z), y= susie_pip, color = highlight)) +
    geom_point() +
    scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
    ggtitle("Original ctwas results") +
    theme_minimal()


  finemap_res_rm_gene <- finemap_res_rm[finemap_res_rm$type != "SNP",]
  finemap_res_rm_gene$highlight <- ifelse(finemap_res_rm_gene$id %in% problematic_genes, "problematic genes", "good genes")

  p2 <- ggplot(data = finemap_res_rm_gene, aes(x= abs(z), y= susie_pip, color = highlight)) +
    geom_point() +
    scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
    ggtitle("After region merge") +
    theme_minimal()


  finemap_res_ldmm_nold_gene <- finemap_res_ldmm_nold[finemap_res_ldmm_nold$type !="SNP",]
  finemap_res_ldmm_nold_gene$highlight <- ifelse(finemap_res_ldmm_nold_gene$id %in% problematic_genes, "problematic genes", "good genes")

  p3 <- ggplot(data = finemap_res_ldmm_nold_gene, aes(x= abs(z), y= susie_pip, color = highlight)) +
    geom_point() +
    scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
    ggtitle("After LD mismatch fixed -- noLD") +
    theme_minimal()

  finemap_res_ldmm_removesnp_gene <- finemap_res_ldmm_removesnp[finemap_res_ldmm_removesnp$type !="SNP",]
  finemap_res_ldmm_removesnp_gene$highlight <- ifelse(finemap_res_ldmm_removesnp_gene$id %in% problematic_genes, "problematic genes", "good genes")

  p4 <- ggplot(data = finemap_res_ldmm_removesnp_gene, aes(x= abs(z), y= susie_pip, color = highlight)) +
    geom_point() +
    scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
    ggtitle("After LD mismatch fixed -- SNP removed") +
    theme_minimal()


  grid.arrange(p1,p2,p3,p4, ncol = 4)

  print("L - estimated in region merge step")
  print(updated_data_res_regionmerge$updated_region_L[problematic_region_ids])
  load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_pipthres02_removesnp_rescreenregion_nozfilter_",trait,".rdata"))
  print("L - re-estimated after updating z_scores, region data")
  print(screen_res$screened_region_L)
}else{

  print("There's no problematic genes")

  finemap_res_origin <- ctwas_res_origin$finemap_res
  finemap_res_origin_gene <- finemap_res_origin[finemap_res_origin$type != "SNP",]

  p1 <- ggplot(data = finemap_res_origin_gene, aes(x= abs(z), y= susie_pip)) +
    geom_point() +
    ggtitle("Original ctwas results") +
    theme_minimal()


  finemap_res_rm_gene <- finemap_res_rm[finemap_res_rm$type != "SNP",]

  p2 <- ggplot(data = finemap_res_rm_gene, aes(x= abs(z), y= susie_pip)) +
    geom_point() +
    ggtitle("After region merge") +
    theme_minimal()

  grid.arrange(p1,p2, ncol = 2)
}

[1] "L - estimated in region merge step"
3_133533329_135738064 
                    2 
[1] "L - re-estimated after updating z_scores, region data"
3_133533329_135738064 
                    2 
print("Zoom in the z<15 part")
[1] "Zoom in the z<15 part"
if(file.exists(file_ldmismatch_results)){
  

  finemap_res_origin_gene_prob <- finemap_res_origin_gene[finemap_res_origin_gene$highlight == "problematic genes",]
  p1 <- ggplot(data = finemap_res_origin_gene_prob, 
        aes(x = abs(z), y = susie_pip, color = highlight, alpha = highlight)) + 
        geom_point() +
        scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
        scale_alpha_manual(values = c("problematic genes" = 1, "good genes" = 0.01)) +
        ggtitle("Original ctwas results") +
        theme_minimal() +
        xlim(0, 15)

  finemap_res_rm_gene_prob <- finemap_res_rm_gene[finemap_res_rm_gene$highlight == "problematic genes",]
  p2 <- ggplot(data = finemap_res_rm_gene_prob, 
        aes(x = abs(z), y = susie_pip, color = highlight, alpha = highlight)) + 
        geom_point() +
        scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
        scale_alpha_manual(values = c("problematic genes" = 1, "good genes" = 0.01)) +
        ggtitle("After region merge") +
        theme_minimal() +
        xlim(0, 15)

  finemap_res_ldmm_nold_gene_prob <- finemap_res_ldmm_nold_gene[finemap_res_ldmm_nold_gene$highlight == "problematic genes",]
  p3 <- ggplot(data = finemap_res_ldmm_nold_gene_prob, 
        aes(x = abs(z), y = susie_pip, color = highlight, alpha = highlight)) + 
        geom_point() +
        scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
        scale_alpha_manual(values = c("problematic genes" = 1, "good genes" = 0.01)) +
        ggtitle("After LD mismatch fixed -- noLD") +
        theme_minimal() +
        xlim(0, 15)

  finemap_res_ldmm_removesnp_gene_prob <-   finemap_res_ldmm_removesnp_gene[finemap_res_ldmm_removesnp_gene$highlight == "problematic genes",]
  p4 <- ggplot(data = finemap_res_ldmm_removesnp_gene_prob, 
        aes(x = abs(z), y = susie_pip, color = highlight, alpha = highlight)) + 
        geom_point() +
        scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
        scale_alpha_manual(values = c("problematic genes" = 1, "good genes" = 0.01)) +
        ggtitle("After LD mismatch fixed -- SNP removed") +
        theme_minimal() +
        xlim(0, 15)
  
  grid.arrange(p1,p2,p3,p4, ncol = 4)
  
}else{

  print("There's no problematic genes")

  finemap_res_origin <- ctwas_res_origin$finemap_res
  finemap_res_origin_gene <- finemap_res_origin[finemap_res_origin$type != "SNP",]

  p1 <- ggplot(data = finemap_res_origin_gene, aes(x= abs(z), y= susie_pip)) +
    geom_point() +
    ggtitle("Original ctwas results") +
    theme_minimal()+
    xlim(0, 15)


  finemap_res_rm_gene <- finemap_res_rm[finemap_res_rm$type != "SNP",]

  p2 <- ggplot(data = finemap_res_rm_gene, aes(x= abs(z), y= susie_pip)) +
    geom_point() +
    ggtitle("After region merge") +
    theme_minimal()+
    xlim(0, 15)

  grid.arrange(p1,p2, ncol = 2)
}

SCZ-ieu-b-5102

trait <- "SCZ-ieu-b-5102"

results_dir_origin <- paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/results/",trait,"/")
ctwas_res_origin <- readRDS(paste0(results_dir_origin,trait,".ctwas.res.RDS"))

finemap_res_origin <- ctwas_res_origin$finemap_res

Region merge

load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/rm_",trait,".rdata"))

finemap_res_rm <- res_regionmerge$finemap_res
finemap_res_rm_boundary_genes <- finemap_res_rm[finemap_res_rm$id %in%selected_boundary_genes$id,]
finemap_res_rm_boundary_genes_pip <- finemap_res_rm_boundary_genes[,c("id","susie_pip","cs")]


finemap_res_origin_boundary_genes <- finemap_res_origin[finemap_res_origin$id %in%selected_boundary_genes$id,]
finemap_res_origin_boundary_genes_pip <- finemap_res_origin_boundary_genes[,c("id","susie_pip","cs")]

finemap_res_compare_regionmerge <- merge(finemap_res_origin_boundary_genes_pip,finemap_res_rm_boundary_genes_pip, by = "id")
colnames(finemap_res_compare_regionmerge) <- c("id","susie_pip_origin","cs_origin","susie_pip_reginmerge","cs_reginmerge")

DT::datatable(finemap_res_compare_regionmerge,caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black;  font-size:150% ;','Selected boundary genes (susie_pip > 0.5)'),options = list(pageLength = 10) )

LD-mismatch

Diagnosis

file_pipthreshold02 <- paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_diagnosis_pipthres02_nozfilter_", trait, ".rdata")

if (file.exists(file_pipthreshold02)) {
  load(file_pipthreshold02)
  pip_02 <- data.frame(
  "PIP Threshold" = "0.2",
  "Number of Selected Regions" = length(selected_region_ids),
  "Number of Problematic Genes" = length(problematic_genes),
  "Number of Problematic Regions" = length(problematic_region_ids),
  "Number of Problematic SNPs" = length(res_ldmismatch$problematic_snps),
  "Number of Flipped SNPs" = length(res_ldmismatch$flipped_snps)
)
}else{

  load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_diagnosis_pipthres02_", trait, ".rdata"))
  pip_02 <- data.frame(
  "PIP Threshold" = "0.2",
  "Number of Selected Regions Number of Selected Regions" = length(selected_region_ids),
  "Number of Problematic Genes" = 0,
  "Number of Problematic Regions" = 0,
  "Number of Problematic SNPs" = length(res_ldmismatch$problematic_snps),
  "Number of Flipped SNPs" = length(res_ldmismatch$flipped_snps)
)

}

file_pipthreshold05 <- paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_diagnosis_pipthres05_nozfilter_", trait, ".rdata")

if (file.exists(file_pipthreshold05)) {
  load(file_pipthreshold05)
  pip_05 <- data.frame(
  "PIP Threshold" = "0.5",
  "Number of Selected Regions" = length(selected_region_ids),
  "Number of Problematic Genes" = length(problematic_genes),
  "Number of Problematic Regions" = length(problematic_region_ids),
  "Number of Problematic SNPs" = length(res_ldmismatch$problematic_snps),
  "Number of Flipped SNPs" = length(res_ldmismatch$flipped_snps)
)
}else{

  load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_diagnosis_pipthres05_", trait, ".rdata"))
  pip_05 <- data.frame(
  "PIP Threshold" = "0.5",
  "Number of Selected Regions" = length(selected_region_ids),
  "Number of Problematic Genes" = 0,
  "Number of Problematic Regions" = 0,
  "Number of Problematic SNPs" = length(res_ldmismatch$problematic_snps),
  "Number of Flipped SNPs" = length(res_ldmismatch$flipped_snps)
)

}


results_table <- rbind(pip_02, pip_05)

DT::datatable(results_table,caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black;  font-size:150% ;','LD mismatch diagnosis table for different gene cutoff'),options = list(pageLength = 10) )

Comparing 2 LD mismatch fixing methods

file_ldmismatch_results <- paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_pipthres02_nold_nozfilter_",trait,".rdata")

if(file.exists(file_ldmismatch_results)) {

  load(file_pipthreshold02)

  load(file_ldmismatch_results)
  finemap_res_ldmm_nold <- res_ldmm_nold$finemap_res
  load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_pipthres02_removesnp_nozfilter_",trait,".rdata"))
  finemap_res_ldmm_removesnp <- res_ldmm_removesnp$finemap_res

  finemap_res_ldmm_nold_problematic_gene <- finemap_res_ldmm_nold[finemap_res_ldmm_nold$region_id %in% problematic_region_ids & finemap_res_ldmm_nold$type != "SNP",]
  finemap_res_ldmm_removesnp_problematic_gene <- finemap_res_ldmm_removesnp[finemap_res_ldmm_removesnp$region_id %in% problematic_region_ids & finemap_res_ldmm_removesnp$type != "SNP",]

  merge_2method <- merge(finemap_res_ldmm_nold_problematic_gene,finemap_res_ldmm_removesnp_problematic_gene, by ="id",all.x=T)
  merge_2method$highlight <- ifelse(merge_2method$id %in% problematic_genes, "problematic genes", "good genes")
  merge_2method$susie_pip.y[is.na(merge_2method$susie_pip.y)] <- 1.5
  p1 <- ggplot(data = merge_2method, aes(x = susie_pip.x, y = susie_pip.y, color = highlight, alpha = highlight)) + 
    geom_point() +
    scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +  
    scale_alpha_manual(values = c("problematic genes" = 1, "good genes" = 0.1)) +
    labs(x = "PIP_noLD", y = "PIP_removesnp") + 
    geom_abline(slope = 1, intercept = 0, col = "red") + 
    ggtitle("Problematic regions only, genes only") +
    theme_minimal()

  finemap_res_rm_problematic_gene <- finemap_res_rm[finemap_res_rm$region_id %in% problematic_region_ids & finemap_res_rm$type != "SNP",]

  merge_rm_ldmm_nold <-  merge(finemap_res_rm_problematic_gene,finemap_res_ldmm_nold_problematic_gene, by ="id",all.x=T)
  merge_rm_ldmm_nold$highlight <- ifelse(merge_rm_ldmm_nold$id %in% problematic_genes, "problematic genes", "good genes")
  merge_rm_ldmm_nold$susie_pip.y[is.na(merge_rm_ldmm_nold$susie_pip.y)] <- 1.5
  p2 <- ggplot(data = merge_rm_ldmm_nold, aes(x= susie_pip.x, y= susie_pip.y, color = highlight, alpha = highlight)) + 
    geom_point() +
    labs(x="PIP_after_regionmerge", y="PIP_noLD") + 
    scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +  
    scale_alpha_manual(values = c("problematic genes" = 1, "good genes" = 0.1)) +
    geom_abline(slope = 1, intercept = 0, col ="red") + 
    ggtitle("problematic regions only, genes only") +
    theme_minimal()

  merge_rm_ldmm_removesnp <-  merge(finemap_res_rm_problematic_gene,finemap_res_ldmm_removesnp_problematic_gene, by ="id",all.x =T)
  merge_rm_ldmm_removesnp$highlight <- ifelse(merge_rm_ldmm_removesnp$id %in% problematic_genes, "problematic genes", "good genes")
  merge_rm_ldmm_removesnp$susie_pip.y[is.na(merge_rm_ldmm_removesnp$susie_pip.y)] <- 1.5
  p3 <- ggplot(data = merge_rm_ldmm_removesnp, aes(x= susie_pip.x, y= susie_pip.y, color = highlight, alpha = highlight)) + 
    geom_point() +
    labs(x="PIP_after_regionmerge", y="PIP_removesnp") + 
    scale_alpha_manual(values = c("problematic genes" = 1, "good genes" = 0.1)) +
    scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
    geom_abline(slope = 1, intercept = 0, col ="red") + 
    ggtitle("problematic regions only, genes only") +
    theme_minimal()
  print(sprintf("Total number of molecular traits in problematic regions = %s",nrow(merge_rm_ldmm_removesnp)))
  print(sprintf("Number of molecular traits disappeared after removing prblematic SNPs = %s", sum(merge_rm_ldmm_removesnp$susie_pip.y == 1.5)))
  print("The dots showing PIP =1.5 means: these genes were removed since the only QTLs of them are problematic")
  grid.arrange(p1,p2,p3, ncol = 3)



}else{

  print("There's no problematic genes, no need to compare")

}
[1] "There's no problematic genes, no need to compare"

Comparing z-scores and susie_pip

if(file.exists(file_ldmismatch_results)){

  finemap_res_origin <- ctwas_res_origin$finemap_res
  finemap_res_origin_gene <- finemap_res_origin[finemap_res_origin$type != "SNP",]
  finemap_res_origin_gene$highlight <- ifelse(finemap_res_origin_gene$id %in% problematic_genes, "problematic genes", "good genes")

  p1 <- ggplot(data = finemap_res_origin_gene, aes(x= abs(z), y= susie_pip, color = highlight)) +
    geom_point() +
    scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
    ggtitle("Original ctwas results") +
    theme_minimal()


  finemap_res_rm_gene <- finemap_res_rm[finemap_res_rm$type != "SNP",]
  finemap_res_rm_gene$highlight <- ifelse(finemap_res_rm_gene$id %in% problematic_genes, "problematic genes", "good genes")

  p2 <- ggplot(data = finemap_res_rm_gene, aes(x= abs(z), y= susie_pip, color = highlight)) +
    geom_point() +
    scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
    ggtitle("After region merge") +
    theme_minimal()


  finemap_res_ldmm_nold_gene <- finemap_res_ldmm_nold[finemap_res_ldmm_nold$type !="SNP",]
  finemap_res_ldmm_nold_gene$highlight <- ifelse(finemap_res_ldmm_nold_gene$id %in% problematic_genes, "problematic genes", "good genes")

  p3 <- ggplot(data = finemap_res_ldmm_nold_gene, aes(x= abs(z), y= susie_pip, color = highlight)) +
    geom_point() +
    scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
    ggtitle("After LD mismatch fixed -- noLD") +
    theme_minimal()

  finemap_res_ldmm_removesnp_gene <- finemap_res_ldmm_removesnp[finemap_res_ldmm_removesnp$type !="SNP",]
  finemap_res_ldmm_removesnp_gene$highlight <- ifelse(finemap_res_ldmm_removesnp_gene$id %in% problematic_genes, "problematic genes", "good genes")

  p4 <- ggplot(data = finemap_res_ldmm_removesnp_gene, aes(x= abs(z), y= susie_pip, color = highlight)) +
    geom_point() +
    scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
    ggtitle("After LD mismatch fixed -- SNP removed") +
    theme_minimal()


  grid.arrange(p1,p2,p3,p4, ncol = 4)

  print("L - estimated in region merge step")
  print(updated_data_res_regionmerge$updated_region_L[problematic_region_ids])
  load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_pipthres02_removesnp_rescreenregion_nozfilter_",trait,".rdata"))
  print("L - re-estimated after updating z_scores, region data")
  print(screen_res$screened_region_L)
}else{

  print("There's no problematic genes")

  finemap_res_origin <- ctwas_res_origin$finemap_res
  finemap_res_origin_gene <- finemap_res_origin[finemap_res_origin$type != "SNP",]

  p1 <- ggplot(data = finemap_res_origin_gene, aes(x= abs(z), y= susie_pip)) +
    geom_point() +
    ggtitle("Original ctwas results") +
    theme_minimal()


  finemap_res_rm_gene <- finemap_res_rm[finemap_res_rm$type != "SNP",]

  p2 <- ggplot(data = finemap_res_rm_gene, aes(x= abs(z), y= susie_pip)) +
    geom_point() +
    ggtitle("After region merge") +
    theme_minimal()

  grid.arrange(p1,p2, ncol = 2)
}
[1] "There's no problematic genes"

print("Zoom in the z<15 part")
[1] "Zoom in the z<15 part"
if(file.exists(file_ldmismatch_results)){
  

  finemap_res_origin_gene_prob <- finemap_res_origin_gene[finemap_res_origin_gene$highlight == "problematic genes",]
  p1 <- ggplot(data = finemap_res_origin_gene_prob, 
        aes(x = abs(z), y = susie_pip, color = highlight, alpha = highlight)) + 
        geom_point() +
        scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
        scale_alpha_manual(values = c("problematic genes" = 1, "good genes" = 0.01)) +
        ggtitle("Original ctwas results") +
        theme_minimal() +
        xlim(0, 15)

  finemap_res_rm_gene_prob <- finemap_res_rm_gene[finemap_res_rm_gene$highlight == "problematic genes",]
  p2 <- ggplot(data = finemap_res_rm_gene_prob, 
        aes(x = abs(z), y = susie_pip, color = highlight, alpha = highlight)) + 
        geom_point() +
        scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
        scale_alpha_manual(values = c("problematic genes" = 1, "good genes" = 0.01)) +
        ggtitle("After region merge") +
        theme_minimal() +
        xlim(0, 15)

  finemap_res_ldmm_nold_gene_prob <- finemap_res_ldmm_nold_gene[finemap_res_ldmm_nold_gene$highlight == "problematic genes",]
  p3 <- ggplot(data = finemap_res_ldmm_nold_gene_prob, 
        aes(x = abs(z), y = susie_pip, color = highlight, alpha = highlight)) + 
        geom_point() +
        scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
        scale_alpha_manual(values = c("problematic genes" = 1, "good genes" = 0.01)) +
        ggtitle("After LD mismatch fixed -- noLD") +
        theme_minimal() +
        xlim(0, 15)

  finemap_res_ldmm_removesnp_gene_prob <-   finemap_res_ldmm_removesnp_gene[finemap_res_ldmm_removesnp_gene$highlight == "problematic genes",]
  p4 <- ggplot(data = finemap_res_ldmm_removesnp_gene_prob, 
        aes(x = abs(z), y = susie_pip, color = highlight, alpha = highlight)) + 
        geom_point() +
        scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
        scale_alpha_manual(values = c("problematic genes" = 1, "good genes" = 0.01)) +
        ggtitle("After LD mismatch fixed -- SNP removed") +
        theme_minimal() +
        xlim(0, 15)
  
  grid.arrange(p1,p2,p3,p4, ncol = 4)
  
}else{

  print("There's no problematic genes")

  finemap_res_origin <- ctwas_res_origin$finemap_res
  finemap_res_origin_gene <- finemap_res_origin[finemap_res_origin$type != "SNP",]

  p1 <- ggplot(data = finemap_res_origin_gene, aes(x= abs(z), y= susie_pip)) +
    geom_point() +
    ggtitle("Original ctwas results") +
    theme_minimal()+
    xlim(0, 15)


  finemap_res_rm_gene <- finemap_res_rm[finemap_res_rm$type != "SNP",]

  p2 <- ggplot(data = finemap_res_rm_gene, aes(x= abs(z), y= susie_pip)) +
    geom_point() +
    ggtitle("After region merge") +
    theme_minimal()+
    xlim(0, 15)

  grid.arrange(p1,p2, ncol = 2)
}
[1] "There's no problematic genes"

WBC-ieu-b-30

trait <- "WBC-ieu-b-30"

results_dir_origin <- paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/results/",trait,"/")
ctwas_res_origin <- readRDS(paste0(results_dir_origin,trait,".ctwas.res.RDS"))

finemap_res_origin <- ctwas_res_origin$finemap_res

Region merge

load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/rm_",trait,".rdata"))

finemap_res_rm <- res_regionmerge$finemap_res
finemap_res_rm_boundary_genes <- finemap_res_rm[finemap_res_rm$id %in%selected_boundary_genes$id,]
finemap_res_rm_boundary_genes_pip <- finemap_res_rm_boundary_genes[,c("id","susie_pip","cs")]


finemap_res_origin_boundary_genes <- finemap_res_origin[finemap_res_origin$id %in%selected_boundary_genes$id,]
finemap_res_origin_boundary_genes_pip <- finemap_res_origin_boundary_genes[,c("id","susie_pip","cs")]

finemap_res_compare_regionmerge <- merge(finemap_res_origin_boundary_genes_pip,finemap_res_rm_boundary_genes_pip, by = "id")
colnames(finemap_res_compare_regionmerge) <- c("id","susie_pip_origin","cs_origin","susie_pip_reginmerge","cs_reginmerge")

DT::datatable(finemap_res_compare_regionmerge,caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black;  font-size:150% ;','Selected boundary genes (susie_pip > 0.5)'),options = list(pageLength = 10) )

LD-mismatch

Diagnosis

file_pipthreshold02 <- paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_diagnosis_pipthres02_nozfilter_", trait, ".rdata")

if (file.exists(file_pipthreshold02)) {
  load(file_pipthreshold02)
  pip_02 <- data.frame(
  "PIP Threshold" = "0.2",
  "Number of Selected Regions" = length(selected_region_ids),
  "Number of Problematic Genes" = length(problematic_genes),
  "Number of Problematic Regions" = length(problematic_region_ids),
  "Number of Problematic SNPs" = length(res_ldmismatch$problematic_snps),
  "Number of Flipped SNPs" = length(res_ldmismatch$flipped_snps)
)
}else{

  load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_diagnosis_pipthres02_", trait, ".rdata"))
  pip_02 <- data.frame(
  "PIP Threshold" = "0.2",
  "Number of Selected Regions Number of Selected Regions" = length(selected_region_ids),
  "Number of Problematic Genes" = 0,
  "Number of Problematic Regions" = 0,
  "Number of Problematic SNPs" = length(res_ldmismatch$problematic_snps),
  "Number of Flipped SNPs" = length(res_ldmismatch$flipped_snps)
)

}

file_pipthreshold05 <- paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_diagnosis_pipthres05_nozfilter_", trait, ".rdata")

if (file.exists(file_pipthreshold05)) {
  load(file_pipthreshold05)
  pip_05 <- data.frame(
  "PIP Threshold" = "0.5",
  "Number of Selected Regions" = length(selected_region_ids),
  "Number of Problematic Genes" = length(problematic_genes),
  "Number of Problematic Regions" = length(problematic_region_ids),
  "Number of Problematic SNPs" = length(res_ldmismatch$problematic_snps),
  "Number of Flipped SNPs" = length(res_ldmismatch$flipped_snps)
)
}else{

  load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_diagnosis_pipthres05_", trait, ".rdata"))
  pip_05 <- data.frame(
  "PIP Threshold" = "0.5",
  "Number of Selected Regions" = length(selected_region_ids),
  "Number of Problematic Genes" = 0,
  "Number of Problematic Regions" = 0,
  "Number of Problematic SNPs" = length(res_ldmismatch$problematic_snps),
  "Number of Flipped SNPs" = length(res_ldmismatch$flipped_snps)
)

}


results_table <- rbind(pip_02, pip_05)

DT::datatable(results_table,caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black;  font-size:150% ;','LD mismatch diagnosis table for different gene cutoff'),options = list(pageLength = 10) )

Comparing 2 LD mismatch fixing methods

file_ldmismatch_results <- paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_pipthres02_nold_nozfilter_",trait,".rdata")

if(file.exists(file_ldmismatch_results)) {

  load(file_pipthreshold02)

  load(file_ldmismatch_results)
  finemap_res_ldmm_nold <- res_ldmm_nold$finemap_res
  load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_pipthres02_removesnp_nozfilter_",trait,".rdata"))
  finemap_res_ldmm_removesnp <- res_ldmm_removesnp$finemap_res

  finemap_res_ldmm_nold_problematic_gene <- finemap_res_ldmm_nold[finemap_res_ldmm_nold$region_id %in% problematic_region_ids & finemap_res_ldmm_nold$type != "SNP",]
  finemap_res_ldmm_removesnp_problematic_gene <- finemap_res_ldmm_removesnp[finemap_res_ldmm_removesnp$region_id %in% problematic_region_ids & finemap_res_ldmm_removesnp$type != "SNP",]

  merge_2method <- merge(finemap_res_ldmm_nold_problematic_gene,finemap_res_ldmm_removesnp_problematic_gene, by ="id",all.x=T)
  merge_2method$highlight <- ifelse(merge_2method$id %in% problematic_genes, "problematic genes", "good genes")
  merge_2method$susie_pip.y[is.na(merge_2method$susie_pip.y)] <- 1.5
  p1 <- ggplot(data = merge_2method, aes(x = susie_pip.x, y = susie_pip.y, color = highlight, alpha = highlight)) + 
    geom_point() +
    scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +  
    scale_alpha_manual(values = c("problematic genes" = 1, "good genes" = 0.1)) +
    labs(x = "PIP_noLD", y = "PIP_removesnp") + 
    geom_abline(slope = 1, intercept = 0, col = "red") + 
    ggtitle("Problematic regions only, genes only") +
    theme_minimal()

  finemap_res_rm_problematic_gene <- finemap_res_rm[finemap_res_rm$region_id %in% problematic_region_ids & finemap_res_rm$type != "SNP",]

  merge_rm_ldmm_nold <-  merge(finemap_res_rm_problematic_gene,finemap_res_ldmm_nold_problematic_gene, by ="id",all.x=T)
  merge_rm_ldmm_nold$highlight <- ifelse(merge_rm_ldmm_nold$id %in% problematic_genes, "problematic genes", "good genes")
  merge_rm_ldmm_nold$susie_pip.y[is.na(merge_rm_ldmm_nold$susie_pip.y)] <- 1.5
  p2 <- ggplot(data = merge_rm_ldmm_nold, aes(x= susie_pip.x, y= susie_pip.y, color = highlight, alpha = highlight)) + 
    geom_point() +
    labs(x="PIP_after_regionmerge", y="PIP_noLD") + 
    scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +  
    scale_alpha_manual(values = c("problematic genes" = 1, "good genes" = 0.1)) +
    geom_abline(slope = 1, intercept = 0, col ="red") + 
    ggtitle("problematic regions only, genes only") +
    theme_minimal()

  merge_rm_ldmm_removesnp <-  merge(finemap_res_rm_problematic_gene,finemap_res_ldmm_removesnp_problematic_gene, by ="id",all.x =T)
  merge_rm_ldmm_removesnp$highlight <- ifelse(merge_rm_ldmm_removesnp$id %in% problematic_genes, "problematic genes", "good genes")
  merge_rm_ldmm_removesnp$susie_pip.y[is.na(merge_rm_ldmm_removesnp$susie_pip.y)] <- 1.5
  p3 <- ggplot(data = merge_rm_ldmm_removesnp, aes(x= susie_pip.x, y= susie_pip.y, color = highlight, alpha = highlight)) + 
    geom_point() +
    labs(x="PIP_after_regionmerge", y="PIP_removesnp") + 
    scale_alpha_manual(values = c("problematic genes" = 1, "good genes" = 0.1)) +
    scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
    geom_abline(slope = 1, intercept = 0, col ="red") + 
    ggtitle("problematic regions only, genes only") +
    theme_minimal()
  print(sprintf("Total number of molecular traits in problematic regions = %s",nrow(merge_rm_ldmm_removesnp)))
  print(sprintf("Number of molecular traits disappeared after removing prblematic SNPs = %s", sum(merge_rm_ldmm_removesnp$susie_pip.y == 1.5)))
  print("The dots showing PIP =1.5 means: these genes were removed since the only QTLs of them are problematic")
  grid.arrange(p1,p2,p3, ncol = 3)



}else{

  print("There's no problematic genes, no need to compare")

}
[1] "Total number of molecular traits in problematic regions = 1309"
[1] "Number of molecular traits disappeared after removing prblematic SNPs = 6"
[1] "The dots showing PIP =1.5 means: these genes were removed since the only QTLs of them are problematic"

Version Author Date
65c1ad1 XSun 2024-12-19

Comparing z-scores and susie_pip

if(file.exists(file_ldmismatch_results)){

  finemap_res_origin <- ctwas_res_origin$finemap_res
  finemap_res_origin_gene <- finemap_res_origin[finemap_res_origin$type != "SNP",]
  finemap_res_origin_gene$highlight <- ifelse(finemap_res_origin_gene$id %in% problematic_genes, "problematic genes", "good genes")

  p1 <- ggplot(data = finemap_res_origin_gene, aes(x= abs(z), y= susie_pip, color = highlight)) +
    geom_point() +
    scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
    ggtitle("Original ctwas results") +
    theme_minimal()


  finemap_res_rm_gene <- finemap_res_rm[finemap_res_rm$type != "SNP",]
  finemap_res_rm_gene$highlight <- ifelse(finemap_res_rm_gene$id %in% problematic_genes, "problematic genes", "good genes")

  p2 <- ggplot(data = finemap_res_rm_gene, aes(x= abs(z), y= susie_pip, color = highlight)) +
    geom_point() +
    scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
    ggtitle("After region merge") +
    theme_minimal()


  finemap_res_ldmm_nold_gene <- finemap_res_ldmm_nold[finemap_res_ldmm_nold$type !="SNP",]
  finemap_res_ldmm_nold_gene$highlight <- ifelse(finemap_res_ldmm_nold_gene$id %in% problematic_genes, "problematic genes", "good genes")

  p3 <- ggplot(data = finemap_res_ldmm_nold_gene, aes(x= abs(z), y= susie_pip, color = highlight)) +
    geom_point() +
    scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
    ggtitle("After LD mismatch fixed -- noLD") +
    theme_minimal()

  finemap_res_ldmm_removesnp_gene <- finemap_res_ldmm_removesnp[finemap_res_ldmm_removesnp$type !="SNP",]
  finemap_res_ldmm_removesnp_gene$highlight <- ifelse(finemap_res_ldmm_removesnp_gene$id %in% problematic_genes, "problematic genes", "good genes")

  p4 <- ggplot(data = finemap_res_ldmm_removesnp_gene, aes(x= abs(z), y= susie_pip, color = highlight)) +
    geom_point() +
    scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
    ggtitle("After LD mismatch fixed -- SNP removed") +
    theme_minimal()


  grid.arrange(p1,p2,p3,p4, ncol = 4)

  print("L - estimated in region merge step")
  print(updated_data_res_regionmerge$updated_region_L[problematic_region_ids])
  load(paste0("/project/xinhe/xsun/multi_group_ctwas/11.multi_group_1008/post_process_rm_ld/ldmismatch_pipthres02_removesnp_rescreenregion_nozfilter_",trait,".rdata"))
  print("L - re-estimated after updating z_scores, region data")
  print(screen_res$screened_region_L)
}else{

  print("There's no problematic genes")

  finemap_res_origin <- ctwas_res_origin$finemap_res
  finemap_res_origin_gene <- finemap_res_origin[finemap_res_origin$type != "SNP",]

  p1 <- ggplot(data = finemap_res_origin_gene, aes(x= abs(z), y= susie_pip)) +
    geom_point() +
    ggtitle("Original ctwas results") +
    theme_minimal()


  finemap_res_rm_gene <- finemap_res_rm[finemap_res_rm$type != "SNP",]

  p2 <- ggplot(data = finemap_res_rm_gene, aes(x= abs(z), y= susie_pip)) +
    geom_point() +
    ggtitle("After region merge") +
    theme_minimal()

  grid.arrange(p1,p2, ncol = 2)
}

[1] "L - estimated in region merge step"
2_217530757_219589829   5_68555033_71944629  19_43358303_44239955 
                    3                     1                     3 
[1] "L - re-estimated after updating z_scores, region data"
2_217530757_219589829   5_68555033_71944629  19_43358303_44239955 
                    4                     1                     4 
print("Zoom in the z<15 part")
[1] "Zoom in the z<15 part"
if(file.exists(file_ldmismatch_results)){
  

  finemap_res_origin_gene_prob <- finemap_res_origin_gene[finemap_res_origin_gene$highlight == "problematic genes",]
  p1 <- ggplot(data = finemap_res_origin_gene_prob, 
        aes(x = abs(z), y = susie_pip, color = highlight, alpha = highlight)) + 
        geom_point() +
        scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
        scale_alpha_manual(values = c("problematic genes" = 1, "good genes" = 0.01)) +
        ggtitle("Original ctwas results") +
        theme_minimal() +
        xlim(0, 15)

  finemap_res_rm_gene_prob <- finemap_res_rm_gene[finemap_res_rm_gene$highlight == "problematic genes",]
  p2 <- ggplot(data = finemap_res_rm_gene_prob, 
        aes(x = abs(z), y = susie_pip, color = highlight, alpha = highlight)) + 
        geom_point() +
        scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
        scale_alpha_manual(values = c("problematic genes" = 1, "good genes" = 0.01)) +
        ggtitle("After region merge") +
        theme_minimal() +
        xlim(0, 15)

  finemap_res_ldmm_nold_gene_prob <- finemap_res_ldmm_nold_gene[finemap_res_ldmm_nold_gene$highlight == "problematic genes",]
  p3 <- ggplot(data = finemap_res_ldmm_nold_gene_prob, 
        aes(x = abs(z), y = susie_pip, color = highlight, alpha = highlight)) + 
        geom_point() +
        scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
        scale_alpha_manual(values = c("problematic genes" = 1, "good genes" = 0.01)) +
        ggtitle("After LD mismatch fixed -- noLD") +
        theme_minimal() +
        xlim(0, 15)

  finemap_res_ldmm_removesnp_gene_prob <-   finemap_res_ldmm_removesnp_gene[finemap_res_ldmm_removesnp_gene$highlight == "problematic genes",]
  p4 <- ggplot(data = finemap_res_ldmm_removesnp_gene_prob, 
        aes(x = abs(z), y = susie_pip, color = highlight, alpha = highlight)) + 
        geom_point() +
        scale_color_manual(values = c("problematic genes" = "red", "good genes" = "black")) +
        scale_alpha_manual(values = c("problematic genes" = 1, "good genes" = 0.01)) +
        ggtitle("After LD mismatch fixed -- SNP removed") +
        theme_minimal() +
        xlim(0, 15)
  
  grid.arrange(p1,p2,p3,p4, ncol = 4)
  
}else{

  print("There's no problematic genes")

  finemap_res_origin <- ctwas_res_origin$finemap_res
  finemap_res_origin_gene <- finemap_res_origin[finemap_res_origin$type != "SNP",]

  p1 <- ggplot(data = finemap_res_origin_gene, aes(x= abs(z), y= susie_pip)) +
    geom_point() +
    ggtitle("Original ctwas results") +
    theme_minimal()+
    xlim(0, 15)


  finemap_res_rm_gene <- finemap_res_rm[finemap_res_rm$type != "SNP",]

  p2 <- ggplot(data = finemap_res_rm_gene, aes(x= abs(z), y= susie_pip)) +
    geom_point() +
    ggtitle("After region merge") +
    theme_minimal()+
    xlim(0, 15)

  grid.arrange(p1,p2, ncol = 2)
}


sessionInfo()
R version 4.2.0 (2022-04-22)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so

locale:
[1] C

attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] dplyr_1.1.4               gridExtra_2.3            
 [3] ggplot2_3.5.1             EnsDb.Hsapiens.v86_2.99.0
 [5] ensembldb_2.20.2          AnnotationFilter_1.20.0  
 [7] GenomicFeatures_1.48.3    AnnotationDbi_1.58.0     
 [9] Biobase_2.56.0            GenomicRanges_1.48.0     
[11] GenomeInfoDb_1.39.9       IRanges_2.30.0           
[13] S4Vectors_0.34.0          BiocGenerics_0.42.0      
[15] ctwas_0.4.20.9001        

loaded via a namespace (and not attached):
  [1] colorspace_2.0-3            rjson_0.2.21               
  [3] ellipsis_0.3.2              rprojroot_2.0.3            
  [5] XVector_0.36.0              locuszoomr_0.2.1           
  [7] fs_1.5.2                    rstudioapi_0.13            
  [9] farver_2.1.0                DT_0.22                    
 [11] ggrepel_0.9.1               bit64_4.0.5                
 [13] fansi_1.0.3                 xml2_1.3.3                 
 [15] codetools_0.2-18            logging_0.10-108           
 [17] cachem_1.0.6                knitr_1.39                 
 [19] jsonlite_1.8.0              workflowr_1.7.0            
 [21] Rsamtools_2.12.0            dbplyr_2.1.1               
 [23] png_0.1-7                   readr_2.1.2                
 [25] compiler_4.2.0              httr_1.4.3                 
 [27] assertthat_0.2.1            Matrix_1.5-3               
 [29] fastmap_1.1.0               lazyeval_0.2.2             
 [31] cli_3.6.1                   later_1.3.0                
 [33] htmltools_0.5.2             prettyunits_1.1.1          
 [35] tools_4.2.0                 gtable_0.3.0               
 [37] glue_1.6.2                  GenomeInfoDbData_1.2.8     
 [39] rappdirs_0.3.3              Rcpp_1.0.12                
 [41] jquerylib_0.1.4             vctrs_0.6.5                
 [43] Biostrings_2.64.0           rtracklayer_1.56.0         
 [45] crosstalk_1.2.0             xfun_0.41                  
 [47] stringr_1.5.1               lifecycle_1.0.4            
 [49] irlba_2.3.5                 restfulr_0.0.14            
 [51] XML_3.99-0.14               zlibbioc_1.42.0            
 [53] zoo_1.8-10                  scales_1.3.0               
 [55] gggrid_0.2-0                hms_1.1.1                  
 [57] promises_1.2.0.1            MatrixGenerics_1.8.0       
 [59] ProtGenerics_1.28.0         parallel_4.2.0             
 [61] SummarizedExperiment_1.26.1 LDlinkR_1.2.3              
 [63] yaml_2.3.5                  curl_4.3.2                 
 [65] memoise_2.0.1               sass_0.4.1                 
 [67] biomaRt_2.54.1              stringi_1.7.6              
 [69] RSQLite_2.3.1               highr_0.9                  
 [71] BiocIO_1.6.0                filelock_1.0.2             
 [73] BiocParallel_1.30.3         rlang_1.1.2                
 [75] pkgconfig_2.0.3             matrixStats_0.62.0         
 [77] bitops_1.0-7                evaluate_0.15              
 [79] lattice_0.20-45             purrr_1.0.2                
 [81] labeling_0.4.2              GenomicAlignments_1.32.0   
 [83] htmlwidgets_1.5.4           cowplot_1.1.1              
 [85] bit_4.0.4                   tidyselect_1.2.0           
 [87] magrittr_2.0.3              R6_2.5.1                   
 [89] generics_0.1.2              DelayedArray_0.22.0        
 [91] DBI_1.2.2                   withr_2.5.0                
 [93] pgenlibr_0.3.3              pillar_1.9.0               
 [95] whisker_0.4                 KEGGREST_1.36.3            
 [97] RCurl_1.98-1.7              mixsqp_0.3-43              
 [99] tibble_3.2.1                crayon_1.5.1               
[101] utf8_1.2.2                  BiocFileCache_2.4.0        
[103] plotly_4.10.0               tzdb_0.4.0                 
[105] rmarkdown_2.25              progress_1.2.2             
[107] grid_4.2.0                  data.table_1.14.2          
[109] blob_1.2.3                  git2r_0.30.1               
[111] digest_0.6.29               tidyr_1.3.0                
[113] httpuv_1.6.5                munsell_0.5.0              
[115] viridisLite_0.4.0           bslib_0.3.1