Last updated: 2023-12-07
Checks: 7 0
Knit directory: multigroup_ctwas_analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20231112)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 18b79ef. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Unstaged changes:
Modified: analysis/detect_LD_mismatch_gwas_UKBBref_susie_rss.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown
(analysis/test_LD_mismatch_DENTIST_susierss.Rmd
) and HTML
(docs/test_LD_mismatch_DENTIST_susierss.html
) files. If
you’ve configured a remote Git repository (see
?wflow_git_remote
), click on the hyperlinks in the table
below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 18b79ef | kevinlkx | 2023-12-07 | added documentations |
html | ced270e | kevinlkx | 2023-12-07 | Build site. |
Rmd | bb0c185 | kevinlkx | 2023-12-07 | test locus with manually changed z-scores |
html | 78e8869 | kevinlkx | 2023-12-07 | Build site. |
Rmd | a36f9c8 | kevinlkx | 2023-12-07 | test locus with manually changed z-scores |
Load packages and functions
library(ctwas)
library(data.table)
library(tidyverse)
trait <- "LDL"
LD Regions (ldetect blocks)
regions <- system.file("extdata/ldetect", "EUR.b38.bed", package = "ctwas")
regions_df <- read.table(regions, header = T)
regions_df <- regions_df %>% dplyr::arrange(chr, start, stop) %>% dplyr::mutate(locus = 1:nrow(regions_df))
locus = "950"
outdir <- paste0("/project2/xinhe/shared_data/multigroup_ctwas/ld_mismatch_test/", trait)
sumstats_hg38_locus <- readRDS(file.path(outdir, paste0(trait, ".test.locus", locus,".changed.sumstats.rds")))
region_df <- regions_df[regions_df$locus == locus,]
print(region_df)
locus_df <- sumstats_hg38_locus
# chr start stop locus
# 950 chr22 24588236 26395662 950
Load Allele Frequency
CHR=22
dentist.dir <- paste0("/project2/xinhe/shared_data/multigroup_ctwas/DENTIST/", trait)
dentist.freq.df <- data.table::fread(file.path(dentist.dir, paste0("LDL-ukb-d-30780_irnt.ukb_chr", CHR, ".b38.frq")))
locus_df$Freq_A1 <- dentist.freq.df$Freq_A1[match(locus_df$snp, dentist.freq.df$RS_ID)]
locus_df$MAF <- pmin(locus_df$Freq_A1, 1-locus_df$Freq_A1)
SuSiE result
susie_original_res <- readRDS(file.path(outdir, paste0(trait, ".test.locus", locus,".original.condz.dist.rds")))
susie_new_res <- readRDS(file.path(outdir, paste0(trait, ".test.locus", locus,".changed.condz.dist.rds")))
stopifnot(all.equal(locus_df$snp, susie_original_res$id))
stopifnot(all.equal(locus_df$snp, susie_new_res$id))
locus_df$susie_original_LP <- -log10(susie_original_res$p_diff)
locus_df$susie_original_logLR <- susie_original_res$logLR
locus_df$susie_new_LP <- -log10(susie_new_res$p_diff)
locus_df$susie_new_logLR <- susie_new_res$logLR
DENTIST result
dentist_res <- data.table::fread(file.path(outdir, paste0(trait, ".test.locus", locus, ".original.DENTIST.full.txt")))
colnames(dentist_res) <- c("rsID", "chisq", "LP", "ifDup")
m <- match(locus_df$snp, dentist_res$rsID)
locus_df$dentist_original_LP <- dentist_res$LP[m]
dentist_res <- data.table::fread(file.path(outdir, paste0(trait, ".test.locus", locus, ".original.10iters.DENTIST.full.txt")))
colnames(dentist_res) <- c("rsID", "chisq", "LP", "ifDup")
m <- match(locus_df$snp, dentist_res$rsID)
locus_df$dentist_original_10iters_LP <- dentist_res$LP[m]
dentist_res <- data.table::fread(file.path(outdir, paste0(trait, ".test.locus", locus, ".original.1Mb.DENTIST.full.txt")))
colnames(dentist_res) <- c("rsID", "chisq", "LP", "ifDup")
m <- match(locus_df$snp, dentist_res$rsID)
locus_df$dentist_original_1Mb_LP <- dentist_res$LP[m]
dentist_res <- data.table::fread(file.path(outdir, paste0(trait, ".test.locus", locus, ".original.1Mb.10iters.DENTIST.full.txt")))
colnames(dentist_res) <- c("rsID", "chisq", "LP", "ifDup")
m <- match(locus_df$snp, dentist_res$rsID)
locus_df$dentist_original_1Mb_10iters_LP <- dentist_res$LP[m]
dentist_res <- data.table::fread(file.path(outdir, paste0(trait, ".test.locus", locus, ".changed.DENTIST.full.txt")))
colnames(dentist_res) <- c("rsID", "chisq", "LP", "ifDup")
m <- match(locus_df$snp, dentist_res$rsID)
locus_df$dentist_new_LP <- dentist_res$LP[m]
dentist_res <- data.table::fread(file.path(outdir, paste0(trait, ".test.locus", locus, ".changed.10iters.DENTIST.full.txt")))
colnames(dentist_res) <- c("rsID", "chisq", "LP", "ifDup")
m <- match(locus_df$snp, dentist_res$rsID)
locus_df$dentist_new_10iters_LP <- dentist_res$LP[m]
dentist_res <- data.table::fread(file.path(outdir, paste0(trait, ".test.locus", locus, ".changed.1Mb.DENTIST.full.txt")))
colnames(dentist_res) <- c("rsID", "chisq", "LP", "ifDup")
m <- match(locus_df$snp, dentist_res$rsID)
locus_df$dentist_new_1Mb_LP <- dentist_res$LP[m]
dentist_res <- data.table::fread(file.path(outdir, paste0(trait, ".test.locus", locus, ".changed.1Mb.10iters.DENTIST.full.txt")))
colnames(dentist_res) <- c("rsID", "chisq", "LP", "ifDup")
m <- match(locus_df$snp, dentist_res$rsID)
locus_df$dentist_new_1Mb_10iters_LP <- dentist_res$LP[m]
DENTIST vs. SuSiE on original data
p1 <- ggplot(na.omit(locus_df), aes(x = dentist_original_10iters_LP, y = susie_original_LP)) +
geom_point(alpha=0.6) +
xlim(0, 100) + ylim(0, 100) +
labs(x = "DENTIST original 2Mb window -log10P", y = "SuSiE original -log10P",
title = paste0(trait, " locus", locus)) +
geom_abline(intercept = 0, slope = 1) +
geom_vline(xintercept = -log10(5e-8), col = "red") +
geom_hline(yintercept = -log10(5e-8), col = "red") +
theme_bw()
p2 <- ggplot(na.omit(locus_df), aes(x = dentist_original_1Mb_10iters_LP, y = susie_original_LP)) +
geom_point(alpha=0.6) +
xlim(0, 100) + ylim(0, 100) +
labs(x = "DENTIST original 1Mb window -log10P", y = "SuSiE original -log10P",
title = paste0(trait, " locus", locus)) +
geom_abline(intercept = 0, slope = 1) +
geom_vline(xintercept = -log10(5e-8), col = "red") +
geom_hline(yintercept = -log10(5e-8), col = "red") +
theme_bw()
p3 <- ggplot(na.omit(locus_df), aes(x = dentist_original_10iters_LP, y = dentist_original_LP)) +
geom_point(alpha=0.6) +
xlim(0, 100) + ylim(0, 100) +
labs(x = "DENTIST original 2Mb window 10 iterations -log10P",
y = "DENTIST original 2Mb window 1 iteration -log10P",
title = paste0(trait, " locus", locus)) +
geom_abline(intercept = 0, slope = 1) +
geom_vline(xintercept = -log10(5e-8), col = "red") +
geom_hline(yintercept = -log10(5e-8), col = "red") +
theme_bw()
p4 <- ggplot(na.omit(locus_df), aes(x = dentist_original_1Mb_10iters_LP, y = dentist_original_1Mb_LP)) +
geom_point(alpha=0.6) +
xlim(0, 100) + ylim(0, 100) +
labs(x = "DENTIST original 2Mb window 10 iterations -log10P",
y = "DENTIST original 2Mb window 1 iteration -log10P",
title = paste0(trait, " locus", locus)) +
geom_abline(intercept = 0, slope = 1) +
geom_vline(xintercept = -log10(5e-8), col = "red") +
geom_hline(yintercept = -log10(5e-8), col = "red") +
theme_bw()
cowplot::plot_grid(p1, p2, p3, p4,
labels = c('A', 'B', 'C', 'D'),
align="hv")
# Warning: Removed 1 rows containing missing values (`geom_point()`).
# Removed 1 rows containing missing values (`geom_point()`).
Version | Author | Date |
---|---|---|
78e8869 | kevinlkx | 2023-12-07 |
DENTIST 1 iteration vs. 10 iterations, 1Mb vs. 2Mb window
p1 <- ggplot(na.omit(locus_df), aes(x = dentist_new_LP, y = dentist_new_10iters_LP, col = factor(changed))) +
geom_point(alpha=0.6) +
scale_colour_manual(values = c("0" = "black", "1" = "red")) +
xlim(0, 100) + ylim(0, 100) +
labs(x = "DENTIST 2Mb window 1 iterations -log10P",
y = "DENTIST 2Mb window 10 iteration -log10P",
color = "Mismatch",
title = paste0(trait, " locus", locus)) +
geom_abline(intercept = 0, slope = 1) +
geom_vline(xintercept = -log10(5e-8), col = "red") +
geom_hline(yintercept = -log10(5e-8), col = "red") +
theme_bw()
p2 <- ggplot(na.omit(locus_df), aes(x = dentist_new_1Mb_LP, y = dentist_new_1Mb_10iters_LP, col = factor(changed))) +
geom_point(alpha=0.6) +
scale_colour_manual(values = c("0" = "black", "1" = "red")) +
xlim(0, 100) + ylim(0, 100) +
labs(x = "DENTIST 1Mb window 1 iterations -log10P",
y = "DENTIST 1Mb window 10 iteration -log10P",
color = "Mismatch",
title = paste0(trait, " locus", locus)) +
geom_abline(intercept = 0, slope = 1) +
geom_vline(xintercept = -log10(5e-8), col = "red") +
geom_hline(yintercept = -log10(5e-8), col = "red") +
theme_bw()
p3 <- ggplot(na.omit(locus_df), aes(x = dentist_new_LP, y = dentist_new_1Mb_LP, col = factor(changed))) +
geom_point(alpha=0.6) +
scale_colour_manual(values = c("0" = "black", "1" = "red")) +
xlim(0, 100) + ylim(0, 100) +
labs(x = "DENTIST 2Mb window 1iteration -log10P",
y = "DENTIST 1Mb window 1iteration -log10P",
color = "Mismatch",
title = paste0(trait, " locus", locus)) +
geom_abline(intercept = 0, slope = 1) +
geom_vline(xintercept = -log10(5e-8), col = "red") +
geom_hline(yintercept = -log10(5e-8), col = "red") +
theme_bw()
p4 <- ggplot(na.omit(locus_df), aes(x = dentist_new_10iters_LP, y = dentist_new_1Mb_10iters_LP, col = factor(changed))) +
geom_point(alpha=0.6) +
scale_colour_manual(values = c("0" = "black", "1" = "red")) +
xlim(0, 100) + ylim(0, 100) +
labs(x = "DENTIST 2Mb window 10 iterations -log10P",
y = "DENTIST 1Mb window 10 iterations -log10P",
color = "Mismatch",
title = paste0(trait, " locus", locus)) +
geom_abline(intercept = 0, slope = 1) +
geom_vline(xintercept = -log10(5e-8), col = "red") +
geom_hline(yintercept = -log10(5e-8), col = "red") +
theme_bw()
cowplot::plot_grid(p1, p2, p3, p4,
labels = c('A', 'B', 'C', 'D'),
align="hv")
# Warning: Removed 2 rows containing missing values (`geom_point()`).
# Warning: Removed 1 rows containing missing values (`geom_point()`).
# Removed 1 rows containing missing values (`geom_point()`).
# Warning: Removed 2 rows containing missing values (`geom_point()`).
Version | Author | Date |
---|---|---|
78e8869 | kevinlkx | 2023-12-07 |
DENTIST vs. SuSiE RSS
p1 <- ggplot(na.omit(locus_df), aes(x = dentist_new_LP, y = susie_new_LP, col = factor(changed))) +
geom_point(alpha=0.6) +
scale_colour_manual(values = c("0" = "black", "1" = "red")) +
xlim(0, 100) + ylim(0, 100) +
labs(x = "DENTIST 2Mb window 1 iteration -log10P", y = "SuSiE -log10P",
color = "Mismatch",
title = paste0(trait, " locus", locus)) +
geom_abline(intercept = 0, slope = 1) +
geom_vline(xintercept = -log10(5e-8), col = "red") +
geom_hline(yintercept = -log10(5e-8), col = "red") +
theme_bw()
p2 <- ggplot(na.omit(locus_df), aes(x = dentist_new_1Mb_LP, y = susie_new_LP, col = factor(changed))) +
geom_point(alpha=0.6) +
scale_colour_manual(values = c("0" = "black", "1" = "red")) +
xlim(0, 100) + ylim(0, 100) +
labs(x = "DENTIST 1Mb window 1 iteration -log10P", y = "SuSiE -log10P",
color = "Mismatch",
title = paste0(trait, " locus", locus)) +
geom_abline(intercept = 0, slope = 1) +
geom_vline(xintercept = -log10(5e-8), col = "red") +
geom_hline(yintercept = -log10(5e-8), col = "red") +
theme_bw()
p3 <- ggplot(na.omit(locus_df), aes(x = dentist_new_10iters_LP, y = susie_new_LP, col = factor(changed))) +
geom_point(alpha=0.6) +
scale_colour_manual(values = c("0" = "black", "1" = "red")) +
xlim(0, 100) + ylim(0, 100) +
labs(x = "DENTIST 2Mb window 10 iterations -log10P", y = "SuSiE -log10P",
color = "Mismatch",
title = paste0(trait, " locus", locus)) +
geom_abline(intercept = 0, slope = 1) +
geom_vline(xintercept = -log10(5e-8), col = "red") +
geom_hline(yintercept = -log10(5e-8), col = "red") +
theme_bw()
p4 <- ggplot(na.omit(locus_df), aes(x = dentist_new_1Mb_10iters_LP, y = susie_new_LP, col = factor(changed))) +
geom_point(alpha=0.6) +
scale_colour_manual(values = c("0" = "black", "1" = "red")) +
xlim(0, 100) + ylim(0, 100) +
labs(x = "DENTIST 1Mb window 10 iterations -log10P", y = "SuSiE -log10P",
color = "Mismatch",
title = paste0(trait, " locus", locus)) +
geom_abline(intercept = 0, slope = 1) +
geom_vline(xintercept = -log10(5e-8), col = "red") +
geom_hline(yintercept = -log10(5e-8), col = "red") +
theme_bw()
cowplot::plot_grid(p1, p2, p3, p4,
labels = c('A', 'B', 'C', 'D'),
align="hv")
# Warning: Removed 2 rows containing missing values (`geom_point()`).
# Removed 2 rows containing missing values (`geom_point()`).
# Removed 2 rows containing missing values (`geom_point()`).
# Removed 2 rows containing missing values (`geom_point()`).
Version | Author | Date |
---|---|---|
78e8869 | kevinlkx | 2023-12-07 |
sessionInfo()
# R version 4.2.0 (2022-04-22)
# Platform: x86_64-pc-linux-gnu (64-bit)
# Running under: CentOS Linux 7 (Core)
#
# Matrix products: default
# BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so
#
# locale:
# [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=C
# [4] LC_COLLATE=C LC_MONETARY=C LC_MESSAGES=C
# [7] LC_PAPER=C LC_NAME=C LC_ADDRESS=C
# [10] LC_TELEPHONE=C LC_MEASUREMENT=C LC_IDENTIFICATION=C
#
# attached base packages:
# [1] stats graphics grDevices utils datasets methods base
#
# other attached packages:
# [1] forcats_1.0.0 stringr_1.5.0 dplyr_1.1.0 purrr_1.0.1
# [5] readr_2.1.4 tidyr_1.3.0 tibble_3.1.8 ggplot2_3.4.1
# [9] tidyverse_1.3.2 data.table_1.14.6 ctwas_0.1.35 workflowr_1.7.0
#
# loaded via a namespace (and not attached):
# [1] httr_1.4.4 sass_0.4.5 jsonlite_1.8.4
# [4] foreach_1.5.2 pgenlibr_0.3.3 logging_0.10-108
# [7] modelr_0.1.10 bslib_0.4.2 assertthat_0.2.1
# [10] getPass_0.2-2 highr_0.10 googlesheets4_1.0.1
# [13] cellranger_1.1.0 yaml_2.3.7 pillar_1.8.1
# [16] backports_1.4.1 lattice_0.20-45 glue_1.6.2
# [19] digest_0.6.31 promises_1.2.0.1 rvest_1.0.3
# [22] colorspace_2.1-0 cowplot_1.1.1 htmltools_0.5.4
# [25] httpuv_1.6.5 Matrix_1.5-3 pkgconfig_2.0.3
# [28] broom_1.0.3 haven_2.5.1 scales_1.2.1
# [31] processx_3.8.0 whisker_0.4 later_1.3.0
# [34] tzdb_0.3.0 timechange_0.2.0 git2r_0.30.1
# [37] googledrive_2.0.0 farver_2.1.1 generics_0.1.3
# [40] ellipsis_0.3.2 cachem_1.0.6 withr_2.5.0
# [43] cli_3.6.0 crayon_1.5.2 magrittr_2.0.3
# [46] readxl_1.4.2 evaluate_0.20 ps_1.7.2
# [49] fs_1.6.1 fansi_1.0.4 xml2_1.3.3
# [52] tools_4.2.0 hms_1.1.2 gargle_1.3.0
# [55] lifecycle_1.0.3 munsell_0.5.0 reprex_2.0.2
# [58] callr_3.7.3 compiler_4.2.0 jquerylib_0.1.4
# [61] rlang_1.0.6 grid_4.2.0 iterators_1.0.14
# [64] rstudioapi_0.14 labeling_0.4.2 rmarkdown_2.20
# [67] gtable_0.3.1 codetools_0.2-18 DBI_1.1.3
# [70] R6_2.5.1 lubridate_1.9.2 knitr_1.42
# [73] fastmap_1.1.0 utf8_1.2.3 rprojroot_2.0.3
# [76] stringi_1.7.12 Rcpp_1.0.10 vctrs_0.5.2
# [79] dbplyr_2.3.0 tidyselect_1.2.0 xfun_0.37