Last updated: 2025-05-19
Checks: 6 1
Knit directory: multigroup_ctwas_analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown is untracked by Git. To know which version of the R
Markdown file created these results, you’ll want to first commit it to
the Git repo. If you’re still working on the analysis, you can ignore
this warning. When you’re finished, you can run
wflow_publish
to commit the R Markdown file and build the
HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20231112)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version cb95caa. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .Rhistory
Ignored: cv/
Untracked files:
Untracked: analysis/realdata_final_tissueselection_mingene0_splicing_exclude.Rmd
Unstaged changes:
Modified: analysis/index.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
There are no past versions. Publish this analysis with
wflow_publish()
to start tracking its development.
For non-psychiatric traits, we ran a cTWAS analysis using sQTL data from all 49 GTEx tissues.
For psychiatric traits, we used only the 9 GTEx brain tissues.
We ranked tissues by their G-test p-values & Fisher p-values and selected those passing the Bonferroni threshold (0.05 divided by the number of tissues) for the multi-group cTWAS analysis.
Default settings were used for computing z-scores, assembling input data, and estimating model parameters.
Mem: 50g/node got killed, 100g/node
z_gene <- compute_gene_z(z_snp, weights, ncore=10)
res <- assemble_region_data(region_info,
z_snp,
z_gene,
weights,
snp_map,
maxSNP = Inf,
min_group_size = 100,
thin = 1,
adjust_boundary_genes = TRUE,
ncore = 15)
param <- est_param(region_data,
group_prior_var_structure = "shared_all",
null_method = "ctwas",
niter_prefit = 3,
min_gene = 0,
min_var = 2,
min_p_single_effect = 0.8,
niter = 200,
ncore = 15,
verbose=TRUE)
library(ctwas)
Warning: replacing previous import 'utils::download.file' by
'restfulr::download.file' when loading 'rtracklayer'
source("/project/xinhe/xsun/multi_group_ctwas/data/samplesize.R")
trait_nopsy <- c("LDL-ukb-d-30780_irnt","aFib-ebi-a-GCST006414","ATH_gtexukb","BMI-panukb","HB-panukb",
"Height-panukb","HTN-panukb","IBD-ebi-a-GCST004131","PLT-panukb","RA-panukb","RBC-panukb",
"SBP-ukb-a-360","T1D-GCST90014023","WBC-ieu-b-30","T2D-panukb")
trait_psy <- c("SCZ-ieu-b-5102","ASD-ieu-a-1185","BIP-ieu-b-5110","MDD-ieu-b-102","PD-ieu-b-7","ADHD-ieu-a-1183","NS-ukb-a-230")
DT::datatable(matrix())
folder_results <- "/project/xinhe/xsun/multi_group_ctwas/21.tissue_selection_0511/results/S_thin1_shared_all_mingene0_exclude/"
converge_df <- c()
for (trait in trait_nopsy){
param <- readRDS(paste0(folder_results,trait,"/",trait,".thin1.shared_all.param.RDS"))
gwas_n <- samplesize[trait]
param_summarized_fisher <- summarize_param(param = param,gwas_n = gwas_n,enrichment_test = "fisher",alternative = "greater")
param_summarized_G <- summarize_param(param = param,gwas_n = gwas_n,enrichment_test = "G")
param_df <- data.frame(
group = names(param_summarized_fisher$group_size),
group_size = as.numeric(param_summarized_fisher$group_size[names(param_summarized_fisher$group_size)]),
group_pve = as.numeric(param_summarized_fisher$group_pve[names(param_summarized_fisher$group_size)]),
prop_heritability = as.numeric(param_summarized_fisher$prop_heritability[names(param_summarized_fisher$group_size)]),
log_enrichment = as.numeric(param_summarized_fisher$log_enrichment[names(param_summarized_fisher$group_size)]),
log_enrichment_se = as.numeric(param_summarized_fisher$log_enrichment_se[names(param_summarized_fisher$group_size)]),
enrichment_pval_fisher = as.numeric(param_summarized_fisher$enrichment_pval[names(param_summarized_fisher$group_size)]),
enrichment_pval_G = as.numeric(param_summarized_G$enrichment_pval[names(param_summarized_G$group_size)])
)
param_df$total_pve <- param_summarized_fisher$total_pve
param_df$prop_heritability <- paste0(round(param_df$prop_heritability * 100, 5), "%")
param_df <- param_df[order(param_df$enrichment_pval_fisher,decreasing = F),]
param_df_qtl <- param_df[-nrow(param_df),]
threshold <- 0.05/(nrow(param_df_qtl)-1)
cat("<br>")
cat(knitr::knit_print(DT::datatable(param_df, caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black; font-size:150% ;',trait,options = list(pageLength = 10)))))
cat("<br>")
cat("<br>")
cat("<br>")
print(paste0("p-value cutoff(0.05/num_tissue) = ",threshold))
cat("<br>")
cat("<br>")
cat(paste0("Number of selected tissue -- fisher = ",min(10,sum(param_df_qtl$enrichment_pval_fisher < threshold)),"\n"))
cat("<br>")
cat(paste0(
head(param_df_qtl$group[param_df_qtl$enrichment_pval_fisher < threshold], 10),
collapse = " "
))
cat("<br>")
cat("<br>")
cat("<br>")
cat(paste0("Number of selected tissue -- G = ",min(10,sum(param_df_qtl$enrichment_pval_G < threshold)),"\n"))
cat("<br>")
cat(paste0(
head(param_df_qtl$group[param_df_qtl$enrichment_pval_G < threshold], 10),
collapse = " "
))
cat("<br>")
cat("<br>")
cat("<br>")
EM_iter <- length(param$loglik_iters)
converge <- param$converged
converge_df <- rbind(converge_df,c(trait,EM_iter,converge))
}
[1] “p-value cutoff(0.05/num_tissue) = 0.0015625”
Number of selected tissue – fisher = 9
Whole_Blood|sQTL
Adipose_Visceral_Omentum|sQTL Artery_Tibial|sQTL
Skin_Not_Sun_Exposed_Suprapubic|sQTL Muscle_Skeletal|sQTL
Artery_Aorta|sQTL Liver|sQTL Spleen|sQTL
Brain_Cerebellum|sQTL
Number of selected tissue – G = 9
Whole_Blood|sQTL Adipose_Visceral_Omentum|sQTL Artery_Tibial|sQTL
Skin_Not_Sun_Exposed_Suprapubic|sQTL Muscle_Skeletal|sQTL
Artery_Aorta|sQTL Liver|sQTL Spleen|sQTL
Brain_Cerebellum|sQTL
[1] “p-value cutoff(0.05/num_tissue) = 0.0015625”
Number of selected tissue – fisher = 6
Muscle_Skeletal|sQTL
Heart_Atrial_Appendage|sQTL Heart_Left_Ventricle|sQTL Colon_Sigmoid|sQTL
Adipose_Subcutaneous|sQTL
Brain_Putamen_basal_ganglia|sQTL
Number of selected tissue –
G = 6
Muscle_Skeletal|sQTL Heart_Atrial_Appendage|sQTL
Heart_Left_Ventricle|sQTL Colon_Sigmoid|sQTL Adipose_Subcutaneous|sQTL
Brain_Putamen_basal_ganglia|sQTL
[1] “p-value cutoff(0.05/num_tissue) = 0.0015625”
Number of selected tissue – fisher = 7
Artery_Aorta|sQTL
Lung|sQTL Thyroid|sQTL Skin_Not_Sun_Exposed_Suprapubic|sQTL
Heart_Atrial_Appendage|sQTL Skin_Sun_Exposed_Lower_leg|sQTL
Whole_Blood|sQTL
Number of selected tissue – G = 7
Artery_Aorta|sQTL Lung|sQTL Thyroid|sQTL
Skin_Not_Sun_Exposed_Suprapubic|sQTL Heart_Atrial_Appendage|sQTL
Skin_Sun_Exposed_Lower_leg|sQTL Whole_Blood|sQTL
[1] “p-value cutoff(0.05/num_tissue) = 0.0015625”
Number of selected tissue – fisher = 5
Esophagus_Muscularis|sQTL Brain_Cerebellum|sQTL
Brain_Caudate_basal_ganglia|sQTL Adipose_Subcutaneous|sQTL
Esophagus_Gastroesophageal_Junction|sQTL
Number of selected
tissue – G = 10
Esophagus_Muscularis|sQTL Brain_Cerebellum|sQTL
Brain_Caudate_basal_ganglia|sQTL Adipose_Subcutaneous|sQTL
Esophagus_Gastroesophageal_Junction|sQTL Adipose_Visceral_Omentum|sQTL
Adrenal_Gland|sQTL Brain_Nucleus_accumbens_basal_ganglia|sQTL
Cells_Cultured_fibroblasts|sQTL Colon_Sigmoid|sQTL
[1] “p-value cutoff(0.05/num_tissue) = 0.0015625”
Number of selected tissue – fisher = 6
Liver|sQTL
Spleen|sQTL Artery_Tibial|sQTL Adrenal_Gland|sQTL Lung|sQTL
Stomach|sQTL
Number of selected tissue – G = 6
Liver|sQTL
Spleen|sQTL Artery_Tibial|sQTL Adrenal_Gland|sQTL Lung|sQTL
Stomach|sQTL
[1] “p-value cutoff(0.05/num_tissue) = 0.0015625”
Number of selected tissue – fisher = 4
Cells_Cultured_fibroblasts|sQTL Artery_Tibial|sQTL Spleen|sQTL
Esophagus_Gastroesophageal_Junction|sQTL
Number of selected
tissue – G = 10
Cells_Cultured_fibroblasts|sQTL Artery_Tibial|sQTL
Spleen|sQTL Esophagus_Gastroesophageal_Junction|sQTL Colon_Sigmoid|sQTL
Adipose_Visceral_Omentum|sQTL Adrenal_Gland|sQTL Artery_Aorta|sQTL
Artery_Coronary|sQTL
Brain_Caudate_basal_ganglia|sQTL
[1] “p-value cutoff(0.05/num_tissue) = 0.0015625”
Number of selected tissue – fisher = 7
Artery_Tibial|sQTL
Skin_Not_Sun_Exposed_Suprapubic|sQTL Heart_Atrial_Appendage|sQTL
Adipose_Visceral_Omentum|sQTL Lung|sQTL Brain_Cerebellar_Hemisphere|sQTL
Spleen|sQTL
Number of selected tissue – G = 7
Artery_Tibial|sQTL Skin_Not_Sun_Exposed_Suprapubic|sQTL
Heart_Atrial_Appendage|sQTL Adipose_Visceral_Omentum|sQTL Lung|sQTL
Brain_Cerebellar_Hemisphere|sQTL Spleen|sQTL
[1] “p-value cutoff(0.05/num_tissue) = 0.0015625”
Number of selected tissue – fisher = 7
Esophagus_Mucosa|sQTL
Colon_Transverse|sQTL Whole_Blood|sQTL
Skin_Not_Sun_Exposed_Suprapubic|sQTL Thyroid|sQTL Adrenal_Gland|sQTL
Heart_Atrial_Appendage|sQTL
Number of selected tissue – G = 7
Esophagus_Mucosa|sQTL Colon_Transverse|sQTL Whole_Blood|sQTL
Skin_Not_Sun_Exposed_Suprapubic|sQTL Thyroid|sQTL Adrenal_Gland|sQTL
Heart_Atrial_Appendage|sQTL
[1] “p-value cutoff(0.05/num_tissue) = 0.0015625”
Number of selected tissue – fisher = 3
Spleen|sQTL
Liver|sQTL Adipose_Visceral_Omentum|sQTL
Number of selected
tissue – G = 10
Spleen|sQTL Liver|sQTL Adipose_Visceral_Omentum|sQTL
Adipose_Subcutaneous|sQTL Artery_Aorta|sQTL Artery_Coronary|sQTL
Brain_Cerebellum|sQTL Colon_Sigmoid|sQTL
Esophagus_Gastroesophageal_Junction|sQTL
Skin_Not_Sun_Exposed_Suprapubic|sQTL
[1] “p-value cutoff(0.05/num_tissue) = 0.0015625”
Number of selected tissue – fisher = 2
Brain_Nucleus_accumbens_basal_ganglia|sQTL
Pituitary|sQTL
Number of selected tissue – G = 2
Brain_Nucleus_accumbens_basal_ganglia|sQTL
Pituitary|sQTL
[1] “p-value cutoff(0.05/num_tissue) = 0.0015625”
Number of selected tissue – fisher = 6
Artery_Tibial|sQTL
Spleen|sQTL Adrenal_Gland|sQTL Lung|sQTL
Skin_Not_Sun_Exposed_Suprapubic|sQTL
Colon_Sigmoid|sQTL
Number of selected tissue – G = 6
Artery_Tibial|sQTL Spleen|sQTL Adrenal_Gland|sQTL Lung|sQTL
Skin_Not_Sun_Exposed_Suprapubic|sQTL
Colon_Sigmoid|sQTL
[1] “p-value cutoff(0.05/num_tissue) = 0.0015625”
Number of selected tissue – fisher = 6
Cells_Cultured_fibroblasts|sQTL Brain_Cerebellar_Hemisphere|sQTL
Esophagus_Mucosa|sQTL Brain_Hypothalamus|sQTL Adrenal_Gland|sQTL
Heart_Left_Ventricle|sQTL
Number of selected tissue – G = 6
Cells_Cultured_fibroblasts|sQTL Brain_Cerebellar_Hemisphere|sQTL
Esophagus_Mucosa|sQTL Brain_Hypothalamus|sQTL Adrenal_Gland|sQTL
Heart_Left_Ventricle|sQTL
[1] “p-value cutoff(0.05/num_tissue) = 0.0015625”
Number of selected tissue – fisher = 5
Lung|sQTL
Whole_Blood|sQTL Artery_Aorta|sQTL Adrenal_Gland|sQTL
Esophagus_Muscularis|sQTL
Number of selected tissue – G = 5
Lung|sQTL Whole_Blood|sQTL Artery_Aorta|sQTL Adrenal_Gland|sQTL
Esophagus_Muscularis|sQTL
[1] “p-value cutoff(0.05/num_tissue) = 0.0015625”
Number of selected tissue – fisher = 7
Skin_Not_Sun_Exposed_Suprapubic|sQTL Whole_Blood|sQTL Spleen|sQTL
Adipose_Visceral_Omentum|sQTL Cells_Cultured_fibroblasts|sQTL
Brain_Frontal_Cortex_BA9|sQTL Artery_Coronary|sQTL
Number of
selected tissue – G = 8
Skin_Not_Sun_Exposed_Suprapubic|sQTL
Whole_Blood|sQTL Spleen|sQTL Adipose_Visceral_Omentum|sQTL
Cells_Cultured_fibroblasts|sQTL Brain_Frontal_Cortex_BA9|sQTL
Artery_Coronary|sQTL Lung|sQTL
[1] “p-value cutoff(0.05/num_tissue) = 0.0015625”
Number of selected tissue – fisher = 6
Pancreas|sQTL
Brain_Cerebellum|sQTL Brain_Cerebellar_Hemisphere|sQTL Whole_Blood|sQTL
Liver|sQTL Adipose_Subcutaneous|sQTL
Number of selected
tissue – G = 6
Pancreas|sQTL Brain_Cerebellum|sQTL
Brain_Cerebellar_Hemisphere|sQTL Whole_Blood|sQTL Liver|sQTL
Adipose_Subcutaneous|sQTL
colnames(converge_df) <- c("trait","num_EM_iter","converge")
cat("<br>")
DT::datatable(converge_df,caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black; font-size:150% ;','EM convergence '),options = list(pageLength = 30) )
cat("<br>")
folder_results <- "/project/xinhe/xsun/multi_group_ctwas/21.tissue_selection_0511/results/S_thin1_shared_all_mingene0/"
converge_df <- c()
for (trait in trait_psy){
param <- readRDS(paste0(folder_results,trait,"/",trait,".thin1.shared_all.param.RDS"))
gwas_n <- samplesize[trait]
param_summarized_fisher <- summarize_param(param = param,gwas_n = gwas_n,enrichment_test = "fisher",alternative = "greater")
param_summarized_G <- summarize_param(param = param,gwas_n = gwas_n,enrichment_test = "G")
param_df <- data.frame(
group = names(param_summarized_fisher$group_size),
group_size = as.numeric(param_summarized_fisher$group_size[names(param_summarized_fisher$group_size)]),
group_pve = as.numeric(param_summarized_fisher$group_pve[names(param_summarized_fisher$group_size)]),
prop_heritability = as.numeric(param_summarized_fisher$prop_heritability[names(param_summarized_fisher$group_size)]),
log_enrichment = as.numeric(param_summarized_fisher$log_enrichment[names(param_summarized_fisher$group_size)]),
log_enrichment_se = as.numeric(param_summarized_fisher$log_enrichment_se[names(param_summarized_fisher$group_size)]),
enrichment_pval_fisher = as.numeric(param_summarized_fisher$enrichment_pval[names(param_summarized_fisher$group_size)]),
enrichment_pval_G = as.numeric(param_summarized_G$enrichment_pval[names(param_summarized_G$group_size)])
)
param_df$total_pve <- param_summarized_fisher$total_pve
param_df$prop_heritability <- paste0(round(param_df$prop_heritability * 100, 5), "%")
param_df <- param_df[order(param_df$enrichment_pval_fisher,decreasing = F),]
param_df_qtl <- param_df[-nrow(param_df),]
threshold <- 0.05/(nrow(param_df_qtl)-1)
cat("<br>")
cat(knitr::knit_print(DT::datatable(param_df, caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black; font-size:150% ;',trait,options = list(pageLength = 10)))))
cat("<br>")
cat("<br>")
cat("<br>")
print(paste0("p-value cutoff(0.05/num_tissue) = ",threshold))
cat("<br>")
cat("<br>")
cat(paste0("Number of selected tissue -- fisher = ",min(10,sum(param_df_qtl$enrichment_pval_fisher < threshold)),"\n"))
cat("<br>")
cat(paste0(
head(param_df_qtl$group[param_df_qtl$enrichment_pval_fisher < threshold], 10),
collapse = " "
))
cat("<br>")
cat("<br>")
cat("<br>")
cat(paste0("Number of selected tissue -- G = ",min(10,sum(param_df_qtl$enrichment_pval_G < threshold)),"\n"))
cat("<br>")
cat(paste0(
head(param_df_qtl$group[param_df_qtl$enrichment_pval_G < threshold], 10),
collapse = " "
))
cat("<br>")
cat("<br>")
cat("<br>")
EM_iter <- length(param$loglik_iters)
converge <- param$converged
converge_df <- rbind(converge_df,c(trait,EM_iter,converge))
}
[1] “p-value cutoff(0.05/num_tissue) = 0.00625”
Number of selected tissue – fisher = 2
Brain_Cerebellar_Hemisphere|sQTL
Brain_Cerebellum|sQTL
Number of selected tissue – G = 2
Brain_Cerebellar_Hemisphere|sQTL
Brain_Cerebellum|sQTL
[1] “p-value cutoff(0.05/num_tissue) = 0.00625”
Number of selected tissue – fisher = 3
Brain_Frontal_Cortex_BA9|sQTL Brain_Hypothalamus|sQTL
Brain_Caudate_basal_ganglia|sQTL
Number of selected tissue –
G = 3
Brain_Frontal_Cortex_BA9|sQTL Brain_Hypothalamus|sQTL
Brain_Caudate_basal_ganglia|sQTL
[1] “p-value cutoff(0.05/num_tissue) = 0.00625”
Number of selected tissue – fisher = 4
Brain_Cerebellum|sQTL
Brain_Cortex|sQTL Brain_Cerebellar_Hemisphere|sQTL
Brain_Putamen_basal_ganglia|sQTL
Number of selected tissue –
G = 4
Brain_Cerebellum|sQTL Brain_Cortex|sQTL
Brain_Cerebellar_Hemisphere|sQTL
Brain_Putamen_basal_ganglia|sQTL
[1] “p-value cutoff(0.05/num_tissue) = 0.00625”
Number of selected tissue – fisher = 2
Brain_Cerebellar_Hemisphere|sQTL
Brain_Cerebellum|sQTL
Number of selected tissue – G = 2
Brain_Cerebellar_Hemisphere|sQTL
Brain_Cerebellum|sQTL
[1] “p-value cutoff(0.05/num_tissue) = 0.00625”
Number of selected tissue – fisher = 3
Brain_Cerebellar_Hemisphere|sQTL
Brain_Nucleus_accumbens_basal_ganglia|sQTL
Brain_Cortex|sQTL
Number of selected tissue – G = 3
Brain_Cerebellar_Hemisphere|sQTL
Brain_Nucleus_accumbens_basal_ganglia|sQTL
Brain_Cortex|sQTL
[1] “p-value cutoff(0.05/num_tissue) = 0.00625”
Number of selected tissue – fisher = 1
Brain_Cerebellar_Hemisphere|sQTL
Number of selected
tissue – G = 1
Brain_Cerebellar_Hemisphere|sQTL
[1] “p-value cutoff(0.05/num_tissue) = 0.00625”
Number of selected tissue – fisher = 1
Brain_Cerebellar_Hemisphere|sQTL
Number of selected
tissue – G = 1
Brain_Cerebellar_Hemisphere|sQTL
colnames(converge_df) <- c("trait","num_EM_iter","converge")
cat("<br>")
DT::datatable(converge_df,caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black; font-size:150% ;','EM convergence '),options = list(pageLength = 30) )
cat("<br>")
sessionInfo()
R version 4.2.0 (2022-04-22)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)
Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so
locale:
[1] C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] ctwas_0.5.19
loaded via a namespace (and not attached):
[1] colorspace_2.0-3 rjson_0.2.21
[3] ellipsis_0.3.2 rprojroot_2.0.3
[5] XVector_0.36.0 locuszoomr_0.2.1
[7] GenomicRanges_1.48.0 base64enc_0.1-3
[9] fs_1.5.2 rstudioapi_0.13
[11] DT_0.22 ggrepel_0.9.1
[13] bit64_4.0.5 AnnotationDbi_1.58.0
[15] fansi_1.0.3 xml2_1.3.3
[17] codetools_0.2-18 logging_0.10-108
[19] cachem_1.0.6 knitr_1.39
[21] jsonlite_1.8.0 workflowr_1.7.0
[23] Rsamtools_2.12.0 dbplyr_2.1.1
[25] png_0.1-7 readr_2.1.2
[27] compiler_4.2.0 httr_1.4.3
[29] assertthat_0.2.1 Matrix_1.5-3
[31] fastmap_1.1.0 lazyeval_0.2.2
[33] cli_3.6.1 later_1.3.0
[35] htmltools_0.5.2 prettyunits_1.1.1
[37] tools_4.2.0 gtable_0.3.0
[39] glue_1.6.2 GenomeInfoDbData_1.2.8
[41] dplyr_1.1.4 rappdirs_0.3.3
[43] Rcpp_1.0.12 Biobase_2.56.0
[45] jquerylib_0.1.4 vctrs_0.6.5
[47] Biostrings_2.64.0 rtracklayer_1.56.0
[49] crosstalk_1.2.0 xfun_0.41
[51] stringr_1.5.1 irlba_2.3.5
[53] lifecycle_1.0.4 restfulr_0.0.14
[55] ensembldb_2.20.2 XML_3.99-0.14
[57] zlibbioc_1.42.0 zoo_1.8-10
[59] scales_1.3.0 gggrid_0.2-0
[61] hms_1.1.1 promises_1.2.0.1
[63] MatrixGenerics_1.8.0 ProtGenerics_1.28.0
[65] parallel_4.2.0 SummarizedExperiment_1.26.1
[67] AnnotationFilter_1.20.0 LDlinkR_1.2.3
[69] yaml_2.3.5 curl_4.3.2
[71] memoise_2.0.1 ggplot2_3.5.1
[73] sass_0.4.1 biomaRt_2.54.1
[75] stringi_1.7.6 RSQLite_2.3.1
[77] S4Vectors_0.34.0 BiocIO_1.6.0
[79] GenomicFeatures_1.48.3 BiocGenerics_0.42.0
[81] filelock_1.0.2 BiocParallel_1.30.3
[83] repr_1.1.4 GenomeInfoDb_1.39.9
[85] rlang_1.1.2 pkgconfig_2.0.3
[87] matrixStats_0.62.0 bitops_1.0-7
[89] evaluate_0.15 lattice_0.20-45
[91] purrr_1.0.2 GenomicAlignments_1.32.0
[93] htmlwidgets_1.5.4 cowplot_1.1.1
[95] bit_4.0.4 tidyselect_1.2.0
[97] magrittr_2.0.3 AMR_2.1.1
[99] R6_2.5.1 IRanges_2.30.0
[101] generics_0.1.2 DelayedArray_0.22.0
[103] DBI_1.2.2 pgenlibr_0.3.3
[105] pillar_1.9.0 KEGGREST_1.36.3
[107] RCurl_1.98-1.7 mixsqp_0.3-43
[109] tibble_3.2.1 crayon_1.5.1
[111] utf8_1.2.2 BiocFileCache_2.4.0
[113] plotly_4.10.0 tzdb_0.4.0
[115] rmarkdown_2.25 progress_1.2.2
[117] grid_4.2.0 data.table_1.14.2
[119] blob_1.2.3 git2r_0.30.1
[121] digest_0.6.29 tidyr_1.3.0
[123] httpuv_1.6.5 stats4_4.2.0
[125] munsell_0.5.0 viridisLite_0.4.0
[127] skimr_2.1.4 bslib_0.3.1