Last updated: 2025-05-19

Checks: 6 1

Knit directory: multigroup_ctwas_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20231112) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version cb95caa. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    cv/

Untracked files:
    Untracked:  analysis/realdata_final_tissueselection_mingene0_splicing_exclude.Rmd

Unstaged changes:
    Modified:   analysis/index.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


Introduction

  • For non-psychiatric traits, we ran a cTWAS analysis using sQTL data from all 49 GTEx tissues.

  • For psychiatric traits, we used only the 9 GTEx brain tissues.

  • We ranked tissues by their G-test p-values & Fisher p-values and selected those passing the Bonferroni threshold (0.05 divided by the number of tissues) for the multi-group cTWAS analysis.

  • Default settings were used for computing z-scores, assembling input data, and estimating model parameters.

Mem: 50g/node got killed, 100g/node

  1. Remove tissues with <200 samples. (2) Remove some tissues that are not related to our traits, including Testis, Nerve Tibial, Ovary, Prostate, Uterus, Vagina, Breast Mammary Tissue.
z_gene <- compute_gene_z(z_snp, weights, ncore=10)
res <- assemble_region_data(region_info, 
                                z_snp, 
                                z_gene, 
                                weights,
                                snp_map,
                                maxSNP = Inf,
                                min_group_size = 100,
                                thin = 1,
                                adjust_boundary_genes = TRUE,
                                ncore = 15)
param <- est_param(region_data, 
                       group_prior_var_structure = "shared_all",
                       null_method = "ctwas",
                       niter_prefit = 3,
                       min_gene = 0,
                       min_var = 2,                          
                       min_p_single_effect = 0.8,
                       niter = 200, 
                       ncore = 15,
                       verbose=TRUE)
library(ctwas)
Warning: replacing previous import 'utils::download.file' by
'restfulr::download.file' when loading 'rtracklayer'
source("/project/xinhe/xsun/multi_group_ctwas/data/samplesize.R")

trait_nopsy <- c("LDL-ukb-d-30780_irnt","aFib-ebi-a-GCST006414","ATH_gtexukb","BMI-panukb","HB-panukb",
             "Height-panukb","HTN-panukb","IBD-ebi-a-GCST004131","PLT-panukb","RA-panukb","RBC-panukb",
             "SBP-ukb-a-360","T1D-GCST90014023","WBC-ieu-b-30","T2D-panukb")

trait_psy <- c("SCZ-ieu-b-5102","ASD-ieu-a-1185","BIP-ieu-b-5110","MDD-ieu-b-102","PD-ieu-b-7","ADHD-ieu-a-1183","NS-ukb-a-230")

DT::datatable(matrix())
folder_results <- "/project/xinhe/xsun/multi_group_ctwas/21.tissue_selection_0511/results/S_thin1_shared_all_mingene0_exclude/"

Non-psychiatric traits

Tissue selection

converge_df <- c()
for (trait in trait_nopsy){

  param <- readRDS(paste0(folder_results,trait,"/",trait,".thin1.shared_all.param.RDS"))

  gwas_n <- samplesize[trait]

  param_summarized_fisher <- summarize_param(param = param,gwas_n = gwas_n,enrichment_test = "fisher",alternative = "greater")
  param_summarized_G <- summarize_param(param = param,gwas_n = gwas_n,enrichment_test = "G")

  param_df <- data.frame(
    group = names(param_summarized_fisher$group_size),
    group_size = as.numeric(param_summarized_fisher$group_size[names(param_summarized_fisher$group_size)]),
    group_pve = as.numeric(param_summarized_fisher$group_pve[names(param_summarized_fisher$group_size)]),
    prop_heritability = as.numeric(param_summarized_fisher$prop_heritability[names(param_summarized_fisher$group_size)]),
    log_enrichment = as.numeric(param_summarized_fisher$log_enrichment[names(param_summarized_fisher$group_size)]),
    log_enrichment_se = as.numeric(param_summarized_fisher$log_enrichment_se[names(param_summarized_fisher$group_size)]),
    enrichment_pval_fisher = as.numeric(param_summarized_fisher$enrichment_pval[names(param_summarized_fisher$group_size)]),
    enrichment_pval_G = as.numeric(param_summarized_G$enrichment_pval[names(param_summarized_G$group_size)])
  )

  param_df$total_pve <- param_summarized_fisher$total_pve

  param_df$prop_heritability <- paste0(round(param_df$prop_heritability * 100, 5), "%")

  param_df <- param_df[order(param_df$enrichment_pval_fisher,decreasing = F),]

  param_df_qtl <- param_df[-nrow(param_df),]
  threshold <- 0.05/(nrow(param_df_qtl)-1)



  cat("<br>")
  cat(knitr::knit_print(DT::datatable(param_df, caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black;  font-size:150% ;',trait,options = list(pageLength = 10)))))
  cat("<br>")


  cat("<br>")
  cat("<br>")
  print(paste0("p-value cutoff(0.05/num_tissue) = ",threshold))
  cat("<br>")
  cat("<br>")
  cat(paste0("Number of selected tissue -- fisher = ",min(10,sum(param_df_qtl$enrichment_pval_fisher < threshold)),"\n"))
  cat("<br>")
  cat(paste0(
    head(param_df_qtl$group[param_df_qtl$enrichment_pval_fisher < threshold], 10),
    collapse = " "
  ))
  cat("<br>")
  cat("<br>")
  cat("<br>")
    cat(paste0("Number of selected tissue -- G = ",min(10,sum(param_df_qtl$enrichment_pval_G < threshold)),"\n"))
  cat("<br>")
  cat(paste0(
    head(param_df_qtl$group[param_df_qtl$enrichment_pval_G < threshold], 10),
    collapse = " "
  ))
  cat("<br>")
  cat("<br>")
  cat("<br>")

  EM_iter <- length(param$loglik_iters)
  converge <- param$converged
  converge_df <- rbind(converge_df,c(trait,EM_iter,converge))
}





[1] “p-value cutoff(0.05/num_tissue) = 0.0015625”

Number of selected tissue – fisher = 9
Whole_Blood|sQTL Adipose_Visceral_Omentum|sQTL Artery_Tibial|sQTL Skin_Not_Sun_Exposed_Suprapubic|sQTL Muscle_Skeletal|sQTL Artery_Aorta|sQTL Liver|sQTL Spleen|sQTL Brain_Cerebellum|sQTL


Number of selected tissue – G = 9
Whole_Blood|sQTL Adipose_Visceral_Omentum|sQTL Artery_Tibial|sQTL Skin_Not_Sun_Exposed_Suprapubic|sQTL Muscle_Skeletal|sQTL Artery_Aorta|sQTL Liver|sQTL Spleen|sQTL Brain_Cerebellum|sQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.0015625”

Number of selected tissue – fisher = 6
Muscle_Skeletal|sQTL Heart_Atrial_Appendage|sQTL Heart_Left_Ventricle|sQTL Colon_Sigmoid|sQTL Adipose_Subcutaneous|sQTL Brain_Putamen_basal_ganglia|sQTL


Number of selected tissue – G = 6
Muscle_Skeletal|sQTL Heart_Atrial_Appendage|sQTL Heart_Left_Ventricle|sQTL Colon_Sigmoid|sQTL Adipose_Subcutaneous|sQTL Brain_Putamen_basal_ganglia|sQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.0015625”

Number of selected tissue – fisher = 7
Artery_Aorta|sQTL Lung|sQTL Thyroid|sQTL Skin_Not_Sun_Exposed_Suprapubic|sQTL Heart_Atrial_Appendage|sQTL Skin_Sun_Exposed_Lower_leg|sQTL Whole_Blood|sQTL


Number of selected tissue – G = 7
Artery_Aorta|sQTL Lung|sQTL Thyroid|sQTL Skin_Not_Sun_Exposed_Suprapubic|sQTL Heart_Atrial_Appendage|sQTL Skin_Sun_Exposed_Lower_leg|sQTL Whole_Blood|sQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.0015625”

Number of selected tissue – fisher = 5
Esophagus_Muscularis|sQTL Brain_Cerebellum|sQTL Brain_Caudate_basal_ganglia|sQTL Adipose_Subcutaneous|sQTL Esophagus_Gastroesophageal_Junction|sQTL


Number of selected tissue – G = 10
Esophagus_Muscularis|sQTL Brain_Cerebellum|sQTL Brain_Caudate_basal_ganglia|sQTL Adipose_Subcutaneous|sQTL Esophagus_Gastroesophageal_Junction|sQTL Adipose_Visceral_Omentum|sQTL Adrenal_Gland|sQTL Brain_Nucleus_accumbens_basal_ganglia|sQTL Cells_Cultured_fibroblasts|sQTL Colon_Sigmoid|sQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.0015625”

Number of selected tissue – fisher = 6
Liver|sQTL Spleen|sQTL Artery_Tibial|sQTL Adrenal_Gland|sQTL Lung|sQTL Stomach|sQTL


Number of selected tissue – G = 6
Liver|sQTL Spleen|sQTL Artery_Tibial|sQTL Adrenal_Gland|sQTL Lung|sQTL Stomach|sQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.0015625”

Number of selected tissue – fisher = 4
Cells_Cultured_fibroblasts|sQTL Artery_Tibial|sQTL Spleen|sQTL Esophagus_Gastroesophageal_Junction|sQTL


Number of selected tissue – G = 10
Cells_Cultured_fibroblasts|sQTL Artery_Tibial|sQTL Spleen|sQTL Esophagus_Gastroesophageal_Junction|sQTL Colon_Sigmoid|sQTL Adipose_Visceral_Omentum|sQTL Adrenal_Gland|sQTL Artery_Aorta|sQTL Artery_Coronary|sQTL Brain_Caudate_basal_ganglia|sQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.0015625”

Number of selected tissue – fisher = 7
Artery_Tibial|sQTL Skin_Not_Sun_Exposed_Suprapubic|sQTL Heart_Atrial_Appendage|sQTL Adipose_Visceral_Omentum|sQTL Lung|sQTL Brain_Cerebellar_Hemisphere|sQTL Spleen|sQTL


Number of selected tissue – G = 7
Artery_Tibial|sQTL Skin_Not_Sun_Exposed_Suprapubic|sQTL Heart_Atrial_Appendage|sQTL Adipose_Visceral_Omentum|sQTL Lung|sQTL Brain_Cerebellar_Hemisphere|sQTL Spleen|sQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.0015625”

Number of selected tissue – fisher = 7
Esophagus_Mucosa|sQTL Colon_Transverse|sQTL Whole_Blood|sQTL Skin_Not_Sun_Exposed_Suprapubic|sQTL Thyroid|sQTL Adrenal_Gland|sQTL Heart_Atrial_Appendage|sQTL


Number of selected tissue – G = 7
Esophagus_Mucosa|sQTL Colon_Transverse|sQTL Whole_Blood|sQTL Skin_Not_Sun_Exposed_Suprapubic|sQTL Thyroid|sQTL Adrenal_Gland|sQTL Heart_Atrial_Appendage|sQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.0015625”

Number of selected tissue – fisher = 3
Spleen|sQTL Liver|sQTL Adipose_Visceral_Omentum|sQTL


Number of selected tissue – G = 10
Spleen|sQTL Liver|sQTL Adipose_Visceral_Omentum|sQTL Adipose_Subcutaneous|sQTL Artery_Aorta|sQTL Artery_Coronary|sQTL Brain_Cerebellum|sQTL Colon_Sigmoid|sQTL Esophagus_Gastroesophageal_Junction|sQTL Skin_Not_Sun_Exposed_Suprapubic|sQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.0015625”

Number of selected tissue – fisher = 2
Brain_Nucleus_accumbens_basal_ganglia|sQTL Pituitary|sQTL


Number of selected tissue – G = 2
Brain_Nucleus_accumbens_basal_ganglia|sQTL Pituitary|sQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.0015625”

Number of selected tissue – fisher = 6
Artery_Tibial|sQTL Spleen|sQTL Adrenal_Gland|sQTL Lung|sQTL Skin_Not_Sun_Exposed_Suprapubic|sQTL Colon_Sigmoid|sQTL


Number of selected tissue – G = 6
Artery_Tibial|sQTL Spleen|sQTL Adrenal_Gland|sQTL Lung|sQTL Skin_Not_Sun_Exposed_Suprapubic|sQTL Colon_Sigmoid|sQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.0015625”

Number of selected tissue – fisher = 6
Cells_Cultured_fibroblasts|sQTL Brain_Cerebellar_Hemisphere|sQTL Esophagus_Mucosa|sQTL Brain_Hypothalamus|sQTL Adrenal_Gland|sQTL Heart_Left_Ventricle|sQTL


Number of selected tissue – G = 6
Cells_Cultured_fibroblasts|sQTL Brain_Cerebellar_Hemisphere|sQTL Esophagus_Mucosa|sQTL Brain_Hypothalamus|sQTL Adrenal_Gland|sQTL Heart_Left_Ventricle|sQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.0015625”

Number of selected tissue – fisher = 5
Lung|sQTL Whole_Blood|sQTL Artery_Aorta|sQTL Adrenal_Gland|sQTL Esophagus_Muscularis|sQTL


Number of selected tissue – G = 5
Lung|sQTL Whole_Blood|sQTL Artery_Aorta|sQTL Adrenal_Gland|sQTL Esophagus_Muscularis|sQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.0015625”

Number of selected tissue – fisher = 7
Skin_Not_Sun_Exposed_Suprapubic|sQTL Whole_Blood|sQTL Spleen|sQTL Adipose_Visceral_Omentum|sQTL Cells_Cultured_fibroblasts|sQTL Brain_Frontal_Cortex_BA9|sQTL Artery_Coronary|sQTL


Number of selected tissue – G = 8
Skin_Not_Sun_Exposed_Suprapubic|sQTL Whole_Blood|sQTL Spleen|sQTL Adipose_Visceral_Omentum|sQTL Cells_Cultured_fibroblasts|sQTL Brain_Frontal_Cortex_BA9|sQTL Artery_Coronary|sQTL Lung|sQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.0015625”

Number of selected tissue – fisher = 6
Pancreas|sQTL Brain_Cerebellum|sQTL Brain_Cerebellar_Hemisphere|sQTL Whole_Blood|sQTL Liver|sQTL Adipose_Subcutaneous|sQTL


Number of selected tissue – G = 6
Pancreas|sQTL Brain_Cerebellum|sQTL Brain_Cerebellar_Hemisphere|sQTL Whole_Blood|sQTL Liver|sQTL Adipose_Subcutaneous|sQTL


EM convergence

colnames(converge_df) <- c("trait","num_EM_iter","converge")
cat("<br>")


DT::datatable(converge_df,caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black;  font-size:150% ;','EM convergence '),options = list(pageLength = 30) )
cat("<br>")


Psychiatric traits

Tissue selection

folder_results <- "/project/xinhe/xsun/multi_group_ctwas/21.tissue_selection_0511/results/S_thin1_shared_all_mingene0/"

converge_df <- c()
for (trait in trait_psy){
  
  param <- readRDS(paste0(folder_results,trait,"/",trait,".thin1.shared_all.param.RDS"))
  
  gwas_n <- samplesize[trait]

  param_summarized_fisher <- summarize_param(param = param,gwas_n = gwas_n,enrichment_test = "fisher",alternative = "greater")
  param_summarized_G <- summarize_param(param = param,gwas_n = gwas_n,enrichment_test = "G")
  
  param_df <- data.frame(
    group = names(param_summarized_fisher$group_size),
    group_size = as.numeric(param_summarized_fisher$group_size[names(param_summarized_fisher$group_size)]),
    group_pve = as.numeric(param_summarized_fisher$group_pve[names(param_summarized_fisher$group_size)]),
    prop_heritability = as.numeric(param_summarized_fisher$prop_heritability[names(param_summarized_fisher$group_size)]),
    log_enrichment = as.numeric(param_summarized_fisher$log_enrichment[names(param_summarized_fisher$group_size)]),
    log_enrichment_se = as.numeric(param_summarized_fisher$log_enrichment_se[names(param_summarized_fisher$group_size)]),
    enrichment_pval_fisher = as.numeric(param_summarized_fisher$enrichment_pval[names(param_summarized_fisher$group_size)]),
    enrichment_pval_G = as.numeric(param_summarized_G$enrichment_pval[names(param_summarized_G$group_size)])
  )

  param_df$total_pve <- param_summarized_fisher$total_pve
  
  param_df$prop_heritability <- paste0(round(param_df$prop_heritability * 100, 5), "%")
  
  param_df <- param_df[order(param_df$enrichment_pval_fisher,decreasing = F),]
  
  param_df_qtl <- param_df[-nrow(param_df),]
  threshold <- 0.05/(nrow(param_df_qtl)-1)
  
  
  
  cat("<br>")
  cat(knitr::knit_print(DT::datatable(param_df, caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black;  font-size:150% ;',trait,options = list(pageLength = 10)))))
  cat("<br>")
  
  
  cat("<br>")
  cat("<br>")
  print(paste0("p-value cutoff(0.05/num_tissue) = ",threshold))
  cat("<br>")
  cat("<br>")
  cat(paste0("Number of selected tissue -- fisher = ",min(10,sum(param_df_qtl$enrichment_pval_fisher < threshold)),"\n"))
  cat("<br>")
  cat(paste0(
    head(param_df_qtl$group[param_df_qtl$enrichment_pval_fisher < threshold], 10), 
    collapse = " "
  ))
  cat("<br>")
  cat("<br>")
  cat("<br>")
    cat(paste0("Number of selected tissue -- G = ",min(10,sum(param_df_qtl$enrichment_pval_G < threshold)),"\n"))
  cat("<br>")
  cat(paste0(
    head(param_df_qtl$group[param_df_qtl$enrichment_pval_G < threshold], 10), 
    collapse = " "
  ))
  cat("<br>")
  cat("<br>")
  cat("<br>")
 
  EM_iter <- length(param$loglik_iters)
  converge <- param$converged
  converge_df <- rbind(converge_df,c(trait,EM_iter,converge))
}





[1] “p-value cutoff(0.05/num_tissue) = 0.00625”

Number of selected tissue – fisher = 2
Brain_Cerebellar_Hemisphere|sQTL Brain_Cerebellum|sQTL


Number of selected tissue – G = 2
Brain_Cerebellar_Hemisphere|sQTL Brain_Cerebellum|sQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.00625”

Number of selected tissue – fisher = 3
Brain_Frontal_Cortex_BA9|sQTL Brain_Hypothalamus|sQTL Brain_Caudate_basal_ganglia|sQTL


Number of selected tissue – G = 3
Brain_Frontal_Cortex_BA9|sQTL Brain_Hypothalamus|sQTL Brain_Caudate_basal_ganglia|sQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.00625”

Number of selected tissue – fisher = 4
Brain_Cerebellum|sQTL Brain_Cortex|sQTL Brain_Cerebellar_Hemisphere|sQTL Brain_Putamen_basal_ganglia|sQTL


Number of selected tissue – G = 4
Brain_Cerebellum|sQTL Brain_Cortex|sQTL Brain_Cerebellar_Hemisphere|sQTL Brain_Putamen_basal_ganglia|sQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.00625”

Number of selected tissue – fisher = 2
Brain_Cerebellar_Hemisphere|sQTL Brain_Cerebellum|sQTL


Number of selected tissue – G = 2
Brain_Cerebellar_Hemisphere|sQTL Brain_Cerebellum|sQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.00625”

Number of selected tissue – fisher = 3
Brain_Cerebellar_Hemisphere|sQTL Brain_Nucleus_accumbens_basal_ganglia|sQTL Brain_Cortex|sQTL


Number of selected tissue – G = 3
Brain_Cerebellar_Hemisphere|sQTL Brain_Nucleus_accumbens_basal_ganglia|sQTL Brain_Cortex|sQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.00625”

Number of selected tissue – fisher = 1
Brain_Cerebellar_Hemisphere|sQTL


Number of selected tissue – G = 1
Brain_Cerebellar_Hemisphere|sQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.00625”

Number of selected tissue – fisher = 1
Brain_Cerebellar_Hemisphere|sQTL


Number of selected tissue – G = 1
Brain_Cerebellar_Hemisphere|sQTL


EM convergence

colnames(converge_df) <- c("trait","num_EM_iter","converge")
cat("<br>")


DT::datatable(converge_df,caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black;  font-size:150% ;','EM convergence '),options = list(pageLength = 30) )
cat("<br>")



sessionInfo()
R version 4.2.0 (2022-04-22)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so

locale:
[1] C

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] ctwas_0.5.19

loaded via a namespace (and not attached):
  [1] colorspace_2.0-3            rjson_0.2.21               
  [3] ellipsis_0.3.2              rprojroot_2.0.3            
  [5] XVector_0.36.0              locuszoomr_0.2.1           
  [7] GenomicRanges_1.48.0        base64enc_0.1-3            
  [9] fs_1.5.2                    rstudioapi_0.13            
 [11] DT_0.22                     ggrepel_0.9.1              
 [13] bit64_4.0.5                 AnnotationDbi_1.58.0       
 [15] fansi_1.0.3                 xml2_1.3.3                 
 [17] codetools_0.2-18            logging_0.10-108           
 [19] cachem_1.0.6                knitr_1.39                 
 [21] jsonlite_1.8.0              workflowr_1.7.0            
 [23] Rsamtools_2.12.0            dbplyr_2.1.1               
 [25] png_0.1-7                   readr_2.1.2                
 [27] compiler_4.2.0              httr_1.4.3                 
 [29] assertthat_0.2.1            Matrix_1.5-3               
 [31] fastmap_1.1.0               lazyeval_0.2.2             
 [33] cli_3.6.1                   later_1.3.0                
 [35] htmltools_0.5.2             prettyunits_1.1.1          
 [37] tools_4.2.0                 gtable_0.3.0               
 [39] glue_1.6.2                  GenomeInfoDbData_1.2.8     
 [41] dplyr_1.1.4                 rappdirs_0.3.3             
 [43] Rcpp_1.0.12                 Biobase_2.56.0             
 [45] jquerylib_0.1.4             vctrs_0.6.5                
 [47] Biostrings_2.64.0           rtracklayer_1.56.0         
 [49] crosstalk_1.2.0             xfun_0.41                  
 [51] stringr_1.5.1               irlba_2.3.5                
 [53] lifecycle_1.0.4             restfulr_0.0.14            
 [55] ensembldb_2.20.2            XML_3.99-0.14              
 [57] zlibbioc_1.42.0             zoo_1.8-10                 
 [59] scales_1.3.0                gggrid_0.2-0               
 [61] hms_1.1.1                   promises_1.2.0.1           
 [63] MatrixGenerics_1.8.0        ProtGenerics_1.28.0        
 [65] parallel_4.2.0              SummarizedExperiment_1.26.1
 [67] AnnotationFilter_1.20.0     LDlinkR_1.2.3              
 [69] yaml_2.3.5                  curl_4.3.2                 
 [71] memoise_2.0.1               ggplot2_3.5.1              
 [73] sass_0.4.1                  biomaRt_2.54.1             
 [75] stringi_1.7.6               RSQLite_2.3.1              
 [77] S4Vectors_0.34.0            BiocIO_1.6.0               
 [79] GenomicFeatures_1.48.3      BiocGenerics_0.42.0        
 [81] filelock_1.0.2              BiocParallel_1.30.3        
 [83] repr_1.1.4                  GenomeInfoDb_1.39.9        
 [85] rlang_1.1.2                 pkgconfig_2.0.3            
 [87] matrixStats_0.62.0          bitops_1.0-7               
 [89] evaluate_0.15               lattice_0.20-45            
 [91] purrr_1.0.2                 GenomicAlignments_1.32.0   
 [93] htmlwidgets_1.5.4           cowplot_1.1.1              
 [95] bit_4.0.4                   tidyselect_1.2.0           
 [97] magrittr_2.0.3              AMR_2.1.1                  
 [99] R6_2.5.1                    IRanges_2.30.0             
[101] generics_0.1.2              DelayedArray_0.22.0        
[103] DBI_1.2.2                   pgenlibr_0.3.3             
[105] pillar_1.9.0                KEGGREST_1.36.3            
[107] RCurl_1.98-1.7              mixsqp_0.3-43              
[109] tibble_3.2.1                crayon_1.5.1               
[111] utf8_1.2.2                  BiocFileCache_2.4.0        
[113] plotly_4.10.0               tzdb_0.4.0                 
[115] rmarkdown_2.25              progress_1.2.2             
[117] grid_4.2.0                  data.table_1.14.2          
[119] blob_1.2.3                  git2r_0.30.1               
[121] digest_0.6.29               tidyr_1.3.0                
[123] httpuv_1.6.5                stats4_4.2.0               
[125] munsell_0.5.0               viridisLite_0.4.0          
[127] skimr_2.1.4                 bslib_0.3.1