Last updated: 2025-05-18

Checks: 6 1

Knit directory: multigroup_ctwas_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20231112) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version e7efeff. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    cv/

Untracked files:
    Untracked:  analysis/realdata_final_tissueselection_mingene0_splicing.Rmd

Unstaged changes:
    Modified:   analysis/realdata_final_tissueselection_mingene0.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


Introduction

  • For non-psychiatric traits, we ran a cTWAS analysis using sQTL data from all 49 GTEx tissues.

  • For psychiatric traits, we used only the 9 GTEx brain tissues.

  • We ranked tissues by their G-test p-values & Fisher p-values and selected those passing the Bonferroni threshold (0.05 divided by the number of tissues) for the multi-group cTWAS analysis.

  • Default settings were used for computing z-scores, assembling input data, and estimating model parameters.

Mem: 50g/node got killed, 100g/node

z_gene <- compute_gene_z(z_snp, weights, ncore=10)
res <- assemble_region_data(region_info, 
                                z_snp, 
                                z_gene, 
                                weights,
                                snp_map,
                                maxSNP = Inf,
                                min_group_size = 100,
                                thin = 1,
                                adjust_boundary_genes = TRUE,
                                ncore = 15)
param <- est_param(region_data, 
                       group_prior_var_structure = "shared_all",
                       null_method = "ctwas",
                       niter_prefit = 3,
                       min_gene = 0,
                       min_var = 2,                          
                       min_p_single_effect = 0.8,
                       niter = 200, 
                       ncore = 15,
                       verbose=TRUE)
library(ctwas)
Warning: replacing previous import 'utils::download.file' by
'restfulr::download.file' when loading 'rtracklayer'
source("/project/xinhe/xsun/multi_group_ctwas/data/samplesize.R")

trait_nopsy <- c("LDL-ukb-d-30780_irnt","aFib-ebi-a-GCST006414","ATH_gtexukb","BMI-panukb","HB-panukb",
             "Height-panukb","HTN-panukb","IBD-ebi-a-GCST004131","PLT-panukb","RA-panukb","RBC-panukb",
             "SBP-ukb-a-360","T1D-GCST90014023","WBC-ieu-b-30","T2D-panukb")

trait_psy <- c("SCZ-ieu-b-5102","ASD-ieu-a-1185","BIP-ieu-b-5110","MDD-ieu-b-102","PD-ieu-b-7","ADHD-ieu-a-1183","NS-ukb-a-230")

DT::datatable(matrix())
folder_results <- "/project/xinhe/xsun/multi_group_ctwas/21.tissue_selection_0511/results/S_thin1_shared_all_mingene0/"

Non-psychiatric traits

Tissue selection

converge_df <- c()
for (trait in trait_nopsy){

  param <- readRDS(paste0(folder_results,trait,"/",trait,".thin1.shared_all.param.RDS"))

  gwas_n <- samplesize[trait]

  param_summarized_fisher <- summarize_param(param = param,gwas_n = gwas_n,enrichment_test = "fisher",alternative = "greater")
  param_summarized_G <- summarize_param(param = param,gwas_n = gwas_n,enrichment_test = "G")

  param_df <- data.frame(
    group = names(param_summarized_fisher$group_size),
    group_size = as.numeric(param_summarized_fisher$group_size[names(param_summarized_fisher$group_size)]),
    group_pve = as.numeric(param_summarized_fisher$group_pve[names(param_summarized_fisher$group_size)]),
    prop_heritability = as.numeric(param_summarized_fisher$prop_heritability[names(param_summarized_fisher$group_size)]),
    log_enrichment = as.numeric(param_summarized_fisher$log_enrichment[names(param_summarized_fisher$group_size)]),
    log_enrichment_se = as.numeric(param_summarized_fisher$log_enrichment_se[names(param_summarized_fisher$group_size)]),
    enrichment_pval_fisher = as.numeric(param_summarized_fisher$enrichment_pval[names(param_summarized_fisher$group_size)]),
    enrichment_pval_G = as.numeric(param_summarized_G$enrichment_pval[names(param_summarized_G$group_size)])
  )

  param_df$total_pve <- param_summarized_fisher$total_pve

  param_df$prop_heritability <- paste0(round(param_df$prop_heritability * 100, 5), "%")

  param_df <- param_df[order(param_df$enrichment_pval_fisher,decreasing = F),]

  param_df_qtl <- param_df[-nrow(param_df),]
  threshold <- 0.05/(nrow(param_df_qtl)-1)



  cat("<br>")
  cat(knitr::knit_print(DT::datatable(param_df, caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black;  font-size:150% ;',trait,options = list(pageLength = 10)))))
  cat("<br>")


  cat("<br>")
  cat("<br>")
  print(paste0("p-value cutoff(0.05/num_tissue) = ",threshold))
  cat("<br>")
  cat("<br>")
  cat(paste0("Number of selected tissue -- fisher = ",min(10,sum(param_df_qtl$enrichment_pval_fisher < threshold)),"\n"))
  cat("<br>")
  cat(paste0(
    head(param_df_qtl$group[param_df_qtl$enrichment_pval_fisher < threshold], 10),
    collapse = " "
  ))
  cat("<br>")
  cat("<br>")
  cat("<br>")
    cat(paste0("Number of selected tissue -- G = ",min(10,sum(param_df_qtl$enrichment_pval_G < threshold)),"\n"))
  cat("<br>")
  cat(paste0(
    head(param_df_qtl$group[param_df_qtl$enrichment_pval_G < threshold], 10),
    collapse = " "
  ))
  cat("<br>")
  cat("<br>")
  cat("<br>")

  EM_iter <- length(param$loglik_iters)
  converge <- param$converged
  converge_df <- rbind(converge_df,c(trait,EM_iter,converge))
}





[1] “p-value cutoff(0.05/num_tissue) = 0.00113636363636364”

Number of selected tissue – fisher = 8
Whole_Blood|sQTL Adipose_Visceral_Omentum|sQTL Ovary|sQTL Skin_Not_Sun_Exposed_Suprapubic|sQTL Artery_Aorta|sQTL Liver|sQTL Muscle_Skeletal|sQTL Brain_Cerebellum|sQTL


Number of selected tissue – G = 8
Whole_Blood|sQTL Adipose_Visceral_Omentum|sQTL Ovary|sQTL Skin_Not_Sun_Exposed_Suprapubic|sQTL Artery_Aorta|sQTL Liver|sQTL Muscle_Skeletal|sQTL Brain_Cerebellum|sQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.00113636363636364”

Number of selected tissue – fisher = 7
Heart_Left_Ventricle|sQTL Muscle_Skeletal|sQTL Heart_Atrial_Appendage|sQTL Testis|sQTL Colon_Sigmoid|sQTL Adipose_Subcutaneous|sQTL Brain_Putamen_basal_ganglia|sQTL


Number of selected tissue – G = 7
Heart_Left_Ventricle|sQTL Muscle_Skeletal|sQTL Heart_Atrial_Appendage|sQTL Testis|sQTL Colon_Sigmoid|sQTL Adipose_Subcutaneous|sQTL Brain_Putamen_basal_ganglia|sQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.00113636363636364”

Number of selected tissue – fisher = 9
Prostate|sQTL Minor_Salivary_Gland|sQTL Lung|sQTL Thyroid|sQTL Artery_Aorta|sQTL Skin_Not_Sun_Exposed_Suprapubic|sQTL Cells_EBV-transformed_lymphocytes|sQTL Skin_Sun_Exposed_Lower_leg|sQTL Testis|sQTL


Number of selected tissue – G = 9
Prostate|sQTL Minor_Salivary_Gland|sQTL Lung|sQTL Thyroid|sQTL Artery_Aorta|sQTL Skin_Not_Sun_Exposed_Suprapubic|sQTL Cells_EBV-transformed_lymphocytes|sQTL Skin_Sun_Exposed_Lower_leg|sQTL Testis|sQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.00113636363636364”

Number of selected tissue – fisher = 4
Esophagus_Muscularis|sQTL Brain_Cerebellum|sQTL Brain_Caudate_basal_ganglia|sQTL Esophagus_Gastroesophageal_Junction|sQTL


Number of selected tissue – G = 10
Esophagus_Muscularis|sQTL Brain_Cerebellum|sQTL Brain_Caudate_basal_ganglia|sQTL Esophagus_Gastroesophageal_Junction|sQTL Adipose_Visceral_Omentum|sQTL Adrenal_Gland|sQTL Breast_Mammary_Tissue|sQTL Cells_Cultured_fibroblasts|sQTL Colon_Sigmoid|sQTL Colon_Transverse|sQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.00113636363636364”

Number of selected tissue – fisher = 6
Testis|sQTL Liver|sQTL Lung|sQTL Stomach|sQTL Artery_Tibial|sQTL Adrenal_Gland|sQTL


Number of selected tissue – G = 5
Testis|sQTL Liver|sQTL Lung|sQTL Stomach|sQTL Artery_Tibial|sQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.00113636363636364”

Number of selected tissue – fisher = 3
Cells_Cultured_fibroblasts|sQTL Artery_Tibial|sQTL Spleen|sQTL


Number of selected tissue – G = 10
Cells_Cultured_fibroblasts|sQTL Artery_Tibial|sQTL Spleen|sQTL Adipose_Visceral_Omentum|sQTL Adrenal_Gland|sQTL Artery_Aorta|sQTL Artery_Coronary|sQTL Brain_Caudate_basal_ganglia|sQTL Brain_Cerebellar_Hemisphere|sQTL Brain_Cerebellum|sQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.00113636363636364”

Number of selected tissue – fisher = 7
Artery_Tibial|sQTL Testis|sQTL Skin_Not_Sun_Exposed_Suprapubic|sQTL Adipose_Visceral_Omentum|sQTL Heart_Atrial_Appendage|sQTL Lung|sQTL Brain_Cerebellar_Hemisphere|sQTL


Number of selected tissue – G = 7
Artery_Tibial|sQTL Testis|sQTL Skin_Not_Sun_Exposed_Suprapubic|sQTL Adipose_Visceral_Omentum|sQTL Heart_Atrial_Appendage|sQTL Lung|sQTL Brain_Cerebellar_Hemisphere|sQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.00113636363636364”

Number of selected tissue – fisher = 4
Esophagus_Mucosa|sQTL Colon_Transverse|sQTL Whole_Blood|sQTL Testis|sQTL


Number of selected tissue – G = 4
Esophagus_Mucosa|sQTL Colon_Transverse|sQTL Whole_Blood|sQTL Testis|sQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.00113636363636364”

Number of selected tissue – fisher = 3
Cells_EBV-transformed_lymphocytes|sQTL Spleen|sQTL Liver|sQTL


Number of selected tissue – G = 8
Cells_EBV-transformed_lymphocytes|sQTL Spleen|sQTL Liver|sQTL Adipose_Subcutaneous|sQTL Breast_Mammary_Tissue|sQTL Nerve_Tibial|sQTL Skin_Not_Sun_Exposed_Suprapubic|sQTL Thyroid|sQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.00113636363636364”

Number of selected tissue – fisher = 2
Brain_Nucleus_accumbens_basal_ganglia|sQTL Vagina|sQTL


Number of selected tissue – G = 2
Brain_Nucleus_accumbens_basal_ganglia|sQTL Vagina|sQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.00113636363636364”

Number of selected tissue – fisher = 6
Artery_Tibial|sQTL Spleen|sQTL Testis|sQTL Lung|sQTL Breast_Mammary_Tissue|sQTL Colon_Sigmoid|sQTL


Number of selected tissue – G = 5
Artery_Tibial|sQTL Spleen|sQTL Testis|sQTL Lung|sQTL Breast_Mammary_Tissue|sQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.00113636363636364”

Number of selected tissue – fisher = 6
Cells_Cultured_fibroblasts|sQTL Testis|sQTL Brain_Cerebellar_Hemisphere|sQTL Nerve_Tibial|sQTL Brain_Hypothalamus|sQTL Heart_Left_Ventricle|sQTL


Number of selected tissue – G = 6
Cells_Cultured_fibroblasts|sQTL Testis|sQTL Brain_Cerebellar_Hemisphere|sQTL Nerve_Tibial|sQTL Brain_Hypothalamus|sQTL Heart_Left_Ventricle|sQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.00113636363636364”

Number of selected tissue – fisher = 7
Artery_Aorta|sQTL Lung|sQTL Adrenal_Gland|sQTL Whole_Blood|sQTL Breast_Mammary_Tissue|sQTL Cells_EBV-transformed_lymphocytes|sQTL Nerve_Tibial|sQTL


Number of selected tissue – G = 7
Artery_Aorta|sQTL Lung|sQTL Adrenal_Gland|sQTL Whole_Blood|sQTL Breast_Mammary_Tissue|sQTL Cells_EBV-transformed_lymphocytes|sQTL Nerve_Tibial|sQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.00113636363636364”

Number of selected tissue – fisher = 7
Skin_Not_Sun_Exposed_Suprapubic|sQTL Whole_Blood|sQTL Spleen|sQTL Testis|sQTL Brain_Frontal_Cortex_BA9|sQTL Nerve_Tibial|sQTL Artery_Coronary|sQTL


Number of selected tissue – G = 7
Skin_Not_Sun_Exposed_Suprapubic|sQTL Whole_Blood|sQTL Spleen|sQTL Testis|sQTL Brain_Frontal_Cortex_BA9|sQTL Nerve_Tibial|sQTL Artery_Coronary|sQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.00113636363636364”

Number of selected tissue – fisher = 7
Brain_Cerebellum|sQTL Testis|sQTL Pancreas|sQTL Whole_Blood|sQTL Liver|sQTL Brain_Cerebellar_Hemisphere|sQTL Adipose_Subcutaneous|sQTL


Number of selected tissue – G = 7
Brain_Cerebellum|sQTL Testis|sQTL Pancreas|sQTL Whole_Blood|sQTL Liver|sQTL Brain_Cerebellar_Hemisphere|sQTL Adipose_Subcutaneous|sQTL


EM convergence

colnames(converge_df) <- c("trait","num_EM_iter","converge")
cat("<br>")


DT::datatable(converge_df,caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black;  font-size:150% ;','EM convergence '),options = list(pageLength = 30) )
cat("<br>")


Psychiatric traits

Tissue selection

converge_df <- c()
for (trait in trait_psy){
  
  param <- readRDS(paste0(folder_results,trait,"/",trait,".thin1.shared_all.param.RDS"))
  
  gwas_n <- samplesize[trait]

  param_summarized_fisher <- summarize_param(param = param,gwas_n = gwas_n,enrichment_test = "fisher",alternative = "greater")
  param_summarized_G <- summarize_param(param = param,gwas_n = gwas_n,enrichment_test = "G")
  
  param_df <- data.frame(
    group = names(param_summarized_fisher$group_size),
    group_size = as.numeric(param_summarized_fisher$group_size[names(param_summarized_fisher$group_size)]),
    group_pve = as.numeric(param_summarized_fisher$group_pve[names(param_summarized_fisher$group_size)]),
    prop_heritability = as.numeric(param_summarized_fisher$prop_heritability[names(param_summarized_fisher$group_size)]),
    log_enrichment = as.numeric(param_summarized_fisher$log_enrichment[names(param_summarized_fisher$group_size)]),
    log_enrichment_se = as.numeric(param_summarized_fisher$log_enrichment_se[names(param_summarized_fisher$group_size)]),
    enrichment_pval_fisher = as.numeric(param_summarized_fisher$enrichment_pval[names(param_summarized_fisher$group_size)]),
    enrichment_pval_G = as.numeric(param_summarized_G$enrichment_pval[names(param_summarized_G$group_size)])
  )

  param_df$total_pve <- param_summarized_fisher$total_pve
  
  param_df$prop_heritability <- paste0(round(param_df$prop_heritability * 100, 5), "%")
  
  param_df <- param_df[order(param_df$enrichment_pval_fisher,decreasing = F),]
  
  param_df_qtl <- param_df[-nrow(param_df),]
  threshold <- 0.05/(nrow(param_df_qtl)-1)
  
  
  
  cat("<br>")
  cat(knitr::knit_print(DT::datatable(param_df, caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black;  font-size:150% ;',trait,options = list(pageLength = 10)))))
  cat("<br>")
  
  
  cat("<br>")
  cat("<br>")
  print(paste0("p-value cutoff(0.05/num_tissue) = ",threshold))
  cat("<br>")
  cat("<br>")
  cat(paste0("Number of selected tissue -- fisher = ",min(10,sum(param_df_qtl$enrichment_pval_fisher < threshold)),"\n"))
  cat("<br>")
  cat(paste0(
    head(param_df_qtl$group[param_df_qtl$enrichment_pval_fisher < threshold], 10), 
    collapse = " "
  ))
  cat("<br>")
  cat("<br>")
  cat("<br>")
    cat(paste0("Number of selected tissue -- G = ",min(10,sum(param_df_qtl$enrichment_pval_G < threshold)),"\n"))
  cat("<br>")
  cat(paste0(
    head(param_df_qtl$group[param_df_qtl$enrichment_pval_G < threshold], 10), 
    collapse = " "
  ))
  cat("<br>")
  cat("<br>")
  cat("<br>")
 
  EM_iter <- length(param$loglik_iters)
  converge <- param$converged
  converge_df <- rbind(converge_df,c(trait,EM_iter,converge))
}





[1] “p-value cutoff(0.05/num_tissue) = 0.00625”

Number of selected tissue – fisher = 2
Brain_Cerebellar_Hemisphere|sQTL Brain_Cerebellum|sQTL


Number of selected tissue – G = 2
Brain_Cerebellar_Hemisphere|sQTL Brain_Cerebellum|sQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.00625”

Number of selected tissue – fisher = 3
Brain_Frontal_Cortex_BA9|sQTL Brain_Hypothalamus|sQTL Brain_Caudate_basal_ganglia|sQTL


Number of selected tissue – G = 3
Brain_Frontal_Cortex_BA9|sQTL Brain_Hypothalamus|sQTL Brain_Caudate_basal_ganglia|sQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.00625”

Number of selected tissue – fisher = 4
Brain_Cerebellum|sQTL Brain_Cortex|sQTL Brain_Cerebellar_Hemisphere|sQTL Brain_Putamen_basal_ganglia|sQTL


Number of selected tissue – G = 4
Brain_Cerebellum|sQTL Brain_Cortex|sQTL Brain_Cerebellar_Hemisphere|sQTL Brain_Putamen_basal_ganglia|sQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.00625”

Number of selected tissue – fisher = 2
Brain_Cerebellar_Hemisphere|sQTL Brain_Cerebellum|sQTL


Number of selected tissue – G = 2
Brain_Cerebellar_Hemisphere|sQTL Brain_Cerebellum|sQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.00625”

Number of selected tissue – fisher = 3
Brain_Cerebellar_Hemisphere|sQTL Brain_Nucleus_accumbens_basal_ganglia|sQTL Brain_Cortex|sQTL


Number of selected tissue – G = 3
Brain_Cerebellar_Hemisphere|sQTL Brain_Nucleus_accumbens_basal_ganglia|sQTL Brain_Cortex|sQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.00625”

Number of selected tissue – fisher = 1
Brain_Cerebellar_Hemisphere|sQTL


Number of selected tissue – G = 1
Brain_Cerebellar_Hemisphere|sQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.00625”

Number of selected tissue – fisher = 1
Brain_Cerebellar_Hemisphere|sQTL


Number of selected tissue – G = 1
Brain_Cerebellar_Hemisphere|sQTL


EM convergence

colnames(converge_df) <- c("trait","num_EM_iter","converge")
cat("<br>")


DT::datatable(converge_df,caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black;  font-size:150% ;','EM convergence '),options = list(pageLength = 30) )
cat("<br>")



sessionInfo()
R version 4.2.0 (2022-04-22)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so

locale:
[1] C

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] ctwas_0.5.19

loaded via a namespace (and not attached):
  [1] colorspace_2.0-3            rjson_0.2.21               
  [3] ellipsis_0.3.2              rprojroot_2.0.3            
  [5] XVector_0.36.0              locuszoomr_0.2.1           
  [7] GenomicRanges_1.48.0        base64enc_0.1-3            
  [9] fs_1.5.2                    rstudioapi_0.13            
 [11] DT_0.22                     ggrepel_0.9.1              
 [13] bit64_4.0.5                 AnnotationDbi_1.58.0       
 [15] fansi_1.0.3                 xml2_1.3.3                 
 [17] codetools_0.2-18            logging_0.10-108           
 [19] cachem_1.0.6                knitr_1.39                 
 [21] jsonlite_1.8.0              workflowr_1.7.0            
 [23] Rsamtools_2.12.0            dbplyr_2.1.1               
 [25] png_0.1-7                   readr_2.1.2                
 [27] compiler_4.2.0              httr_1.4.3                 
 [29] assertthat_0.2.1            Matrix_1.5-3               
 [31] fastmap_1.1.0               lazyeval_0.2.2             
 [33] cli_3.6.1                   later_1.3.0                
 [35] htmltools_0.5.2             prettyunits_1.1.1          
 [37] tools_4.2.0                 gtable_0.3.0               
 [39] glue_1.6.2                  GenomeInfoDbData_1.2.8     
 [41] dplyr_1.1.4                 rappdirs_0.3.3             
 [43] Rcpp_1.0.12                 Biobase_2.56.0             
 [45] jquerylib_0.1.4             vctrs_0.6.5                
 [47] Biostrings_2.64.0           rtracklayer_1.56.0         
 [49] crosstalk_1.2.0             xfun_0.41                  
 [51] stringr_1.5.1               irlba_2.3.5                
 [53] lifecycle_1.0.4             restfulr_0.0.14            
 [55] ensembldb_2.20.2            XML_3.99-0.14              
 [57] zlibbioc_1.42.0             zoo_1.8-10                 
 [59] scales_1.3.0                gggrid_0.2-0               
 [61] hms_1.1.1                   promises_1.2.0.1           
 [63] MatrixGenerics_1.8.0        ProtGenerics_1.28.0        
 [65] parallel_4.2.0              SummarizedExperiment_1.26.1
 [67] AnnotationFilter_1.20.0     LDlinkR_1.2.3              
 [69] yaml_2.3.5                  curl_4.3.2                 
 [71] memoise_2.0.1               ggplot2_3.5.1              
 [73] sass_0.4.1                  biomaRt_2.54.1             
 [75] stringi_1.7.6               RSQLite_2.3.1              
 [77] S4Vectors_0.34.0            BiocIO_1.6.0               
 [79] GenomicFeatures_1.48.3      BiocGenerics_0.42.0        
 [81] filelock_1.0.2              BiocParallel_1.30.3        
 [83] repr_1.1.4                  GenomeInfoDb_1.39.9        
 [85] rlang_1.1.2                 pkgconfig_2.0.3            
 [87] matrixStats_0.62.0          bitops_1.0-7               
 [89] evaluate_0.15               lattice_0.20-45            
 [91] purrr_1.0.2                 GenomicAlignments_1.32.0   
 [93] htmlwidgets_1.5.4           cowplot_1.1.1              
 [95] bit_4.0.4                   tidyselect_1.2.0           
 [97] magrittr_2.0.3              AMR_2.1.1                  
 [99] R6_2.5.1                    IRanges_2.30.0             
[101] generics_0.1.2              DelayedArray_0.22.0        
[103] DBI_1.2.2                   pgenlibr_0.3.3             
[105] pillar_1.9.0                KEGGREST_1.36.3            
[107] RCurl_1.98-1.7              mixsqp_0.3-43              
[109] tibble_3.2.1                crayon_1.5.1               
[111] utf8_1.2.2                  BiocFileCache_2.4.0        
[113] plotly_4.10.0               tzdb_0.4.0                 
[115] rmarkdown_2.25              progress_1.2.2             
[117] grid_4.2.0                  data.table_1.14.2          
[119] blob_1.2.3                  git2r_0.30.1               
[121] digest_0.6.29               tidyr_1.3.0                
[123] httpuv_1.6.5                stats4_4.2.0               
[125] munsell_0.5.0               viridisLite_0.4.0          
[127] skimr_2.1.4                 bslib_0.3.1