Last updated: 2025-05-25
Checks: 6 1
Knit directory: multigroup_ctwas_analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown file has unstaged changes. To know which version of
the R Markdown file created these results, you’ll want to first commit
it to the Git repo. If you’re still working on the analysis, you can
ignore this warning. When you’re finished, you can run
wflow_publish
to commit the R Markdown file and build the
HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20231112)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version c791833. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .Rhistory
Ignored: cv/
Unstaged changes:
Modified: analysis/realdata_final_tissueselection_mingene0_exclude_brainprocessed.Rmd
Modified: analysis/realdata_final_tissueselection_mingene0_splicing_exclude_brainprocessed.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown
(analysis/realdata_final_tissueselection_mingene0_exclude_brainprocessed.Rmd
)
and HTML
(docs/realdata_final_tissueselection_mingene0_exclude_brainprocessed.html
)
files. If you’ve configured a remote Git repository (see
?wflow_git_remote
), click on the hyperlinks in the table
below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | c791833 | XSun | 2025-05-21 | update |
html | c791833 | XSun | 2025-05-21 | update |
For non-psychiatric traits, we ran a cTWAS analysis using sQTL data from all 49 GTEx tissues.
For psychiatric traits, we used only the 9 GTEx brain tissues.
We ranked tissues by their G-test p-values & Fisher p-values and selected those passing the Bonferroni threshold (0.05 divided by the number of tissues) for the multi-group cTWAS analysis.
Default settings were used for computing z-scores, assembling input data, and estimating model parameters.
Mem: 50g/node got killed, 100g/node
z_gene <- compute_gene_z(z_snp, weights, ncore=10)
res <- assemble_region_data(region_info,
z_snp,
z_gene,
weights,
snp_map,
maxSNP = Inf,
min_group_size = 100,
thin = 1,
adjust_boundary_genes = TRUE,
ncore = 15)
param <- est_param(region_data,
group_prior_var_structure = "shared_all",
null_method = "ctwas",
niter_prefit = 3,
min_gene = 0,
min_var = 2,
min_p_single_effect = 0.8,
niter = 200,
ncore = 15,
verbose=TRUE)
library(ctwas)
Warning: replacing previous import 'utils::download.file' by
'restfulr::download.file' when loading 'rtracklayer'
source("/project/xinhe/xsun/multi_group_ctwas/data/samplesize.R")
trait_nopsy <- c("LDL-ukb-d-30780_irnt","aFib-ebi-a-GCST006414","ATH_gtexukb","BMI-panukb","HB-panukb",
"Height-panukb","HTN-panukb","IBD-ebi-a-GCST004131","PLT-panukb","RA-panukb","RBC-panukb",
"SBP-ukb-a-360","T1D-GCST90014023","WBC-ieu-b-30","T2D-panukb")
trait_psy <- c("SCZ-ieu-b-5102","ASD-ieu-a-1185","BIP-ieu-b-5110","MDD-ieu-b-102","PD-ieu-b-7","ADHD-ieu-a-1183","NS-ukb-a-230")
DT::datatable(matrix())
folder_results <- "/project/xinhe/xsun/multi_group_ctwas/21.tissue_selection_0511/results/E_thin1_shared_all_mingene0_exclude_brainprocess/"
converge_df <- c()
for (trait in trait_nopsy){
param <- readRDS(paste0(folder_results,trait,"/",trait,".thin1.shared_all.param.RDS"))
gwas_n <- samplesize[trait]
param_summarized_fisher <- summarize_param(param = param,gwas_n = gwas_n,enrichment_test = "fisher",alternative = "greater")
param_summarized_G <- summarize_param(param = param,gwas_n = gwas_n,enrichment_test = "G")
param_df <- data.frame(
group = names(param_summarized_fisher$group_size),
group_size = as.numeric(param_summarized_fisher$group_size[names(param_summarized_fisher$group_size)]),
group_pve = as.numeric(param_summarized_fisher$group_pve[names(param_summarized_fisher$group_size)]),
prop_heritability = as.numeric(param_summarized_fisher$prop_heritability[names(param_summarized_fisher$group_size)]),
log_enrichment = as.numeric(param_summarized_fisher$log_enrichment[names(param_summarized_fisher$group_size)]),
log_enrichment_se = as.numeric(param_summarized_fisher$log_enrichment_se[names(param_summarized_fisher$group_size)]),
enrichment_pval_fisher = as.numeric(param_summarized_fisher$enrichment_pval[names(param_summarized_fisher$group_size)]),
enrichment_pval_G = as.numeric(param_summarized_G$enrichment_pval[names(param_summarized_G$group_size)])
)
param_df$total_pve <- param_summarized_fisher$total_pve
param_df$prop_heritability <- paste0(round(param_df$prop_heritability * 100, 5), "%")
param_df <- param_df[order(param_df$enrichment_pval_fisher,decreasing = F),]
param_df_qtl <- param_df[-nrow(param_df),]
threshold <- 0.05/(nrow(param_df_qtl)-1)
cat("<br>")
cat(knitr::knit_print(DT::datatable(param_df, caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black; font-size:150% ;',trait,options = list(pageLength = 10)))))
cat("<br>")
cat("<br>")
cat("<br>")
print(paste0("p-value cutoff(0.05/num_tissue) = ",threshold))
cat("<br>")
cat("<br>")
cat(paste0("Number of selected tissue -- fisher = ",min(10,sum(param_df_qtl$enrichment_pval_fisher < threshold)),"\n"))
cat("<br>")
cat(paste0(
head(param_df_qtl$group[param_df_qtl$enrichment_pval_fisher < threshold], 10),
collapse = " "
))
cat("<br>")
cat("<br>")
cat("<br>")
cat(paste0("Number of selected tissue -- G = ",min(10,sum(param_df_qtl$enrichment_pval_G < threshold)),"\n"))
cat("<br>")
cat(paste0(
head(param_df_qtl$group[param_df_qtl$enrichment_pval_G < threshold], 10),
collapse = " "
))
cat("<br>")
cat("<br>")
cat("<br>")
EM_iter <- length(param$loglik_iters)
converge <- param$converged
converge_df <- rbind(converge_df,c(trait,EM_iter,converge))
}
[1] “p-value cutoff(0.05/num_tissue) =
0.00208333333333333”
Number of selected tissue – fisher = 10
Liver|eQTL Whole_Blood|eQTL Lung|eQTL Spleen|eQTL
Esophagus_Gastroesophageal_Junction|eQTL Esophagus_Mucosa|eQTL
Colon_Transverse|eQTL Artery_Coronary|eQTL
Cells_Cultured_fibroblasts|eQTL Pancreas|eQTL
Number of
selected tissue – G = 10
Liver|eQTL Whole_Blood|eQTL Lung|eQTL
Spleen|eQTL Esophagus_Gastroesophageal_Junction|eQTL
Esophagus_Mucosa|eQTL Colon_Transverse|eQTL Artery_Coronary|eQTL
Cells_Cultured_fibroblasts|eQTL Pancreas|eQTL
[1] “p-value cutoff(0.05/num_tissue) =
0.00208333333333333”
Number of selected tissue – fisher = 10
Heart_Atrial_Appendage|eQTL Heart_Left_Ventricle|eQTL
Esophagus_Muscularis|eQTL Artery_Aorta|eQTL Muscle_Skeletal|eQTL
Spleen|eQTL Artery_Tibial|eQTL Thyroid|eQTL
Cells_Cultured_fibroblasts|eQTL Lung|eQTL
Number of selected
tissue – G = 10
Heart_Atrial_Appendage|eQTL
Heart_Left_Ventricle|eQTL Esophagus_Muscularis|eQTL Artery_Aorta|eQTL
Muscle_Skeletal|eQTL Spleen|eQTL Artery_Tibial|eQTL Thyroid|eQTL
Cells_Cultured_fibroblasts|eQTL Lung|eQTL
[1] “p-value cutoff(0.05/num_tissue) =
0.00208333333333333”
Number of selected tissue – fisher = 10
Spleen|eQTL Thyroid|eQTL Heart_Left_Ventricle|eQTL
Esophagus_Muscularis|eQTL Heart_Atrial_Appendage|eQTL
Colon_Transverse|eQTL Artery_Tibial|eQTL Liver|eQTL
Adipose_Subcutaneous|eQTL
Skin_Not_Sun_Exposed_Suprapubic|eQTL
Number of selected
tissue – G = 10
Spleen|eQTL Thyroid|eQTL Heart_Left_Ventricle|eQTL
Esophagus_Muscularis|eQTL Heart_Atrial_Appendage|eQTL
Colon_Transverse|eQTL Artery_Tibial|eQTL Liver|eQTL
Adipose_Subcutaneous|eQTL
Skin_Not_Sun_Exposed_Suprapubic|eQTL
[1] “p-value cutoff(0.05/num_tissue) = 0.0015625”
Number of selected tissue – fisher = 10
Cells_Cultured_fibroblasts|eQTL Brain_Cerebellar_Hemisphere|eQTL
Artery_Aorta|eQTL Brain_Cortex|eQTL Esophagus_Mucosa|eQTL
Heart_Left_Ventricle|eQTL Brain_Cerebellum|eQTL Muscle_Skeletal|eQTL
Brain_Putamen_basal_ganglia|eQTL Spleen|eQTL
Number of
selected tissue – G = 10
Cells_Cultured_fibroblasts|eQTL
Brain_Cerebellar_Hemisphere|eQTL Artery_Aorta|eQTL Brain_Cortex|eQTL
Esophagus_Mucosa|eQTL Heart_Left_Ventricle|eQTL Brain_Cerebellum|eQTL
Muscle_Skeletal|eQTL Brain_Putamen_basal_ganglia|eQTL
Spleen|eQTL
[1] “p-value cutoff(0.05/num_tissue) =
0.00208333333333333”
Number of selected tissue – fisher = 10
Adipose_Subcutaneous|eQTL Cells_Cultured_fibroblasts|eQTL
Heart_Atrial_Appendage|eQTL Whole_Blood|eQTL
Skin_Not_Sun_Exposed_Suprapubic|eQTL Thyroid|eQTL
Esophagus_Gastroesophageal_Junction|eQTL Lung|eQTL Liver|eQTL
Colon_Sigmoid|eQTL
Number of selected tissue – G = 10
Adipose_Subcutaneous|eQTL Cells_Cultured_fibroblasts|eQTL
Heart_Atrial_Appendage|eQTL Whole_Blood|eQTL
Skin_Not_Sun_Exposed_Suprapubic|eQTL Thyroid|eQTL
Esophagus_Gastroesophageal_Junction|eQTL Lung|eQTL Liver|eQTL
Colon_Sigmoid|eQTL
[1] “p-value cutoff(0.05/num_tissue) =
0.00208333333333333”
Number of selected tissue – fisher = 10
Artery_Tibial|eQTL Cells_Cultured_fibroblasts|eQTL
Colon_Sigmoid|eQTL Skin_Not_Sun_Exposed_Suprapubic|eQTL
Adipose_Visceral_Omentum|eQTL Heart_Atrial_Appendage|eQTL
Whole_Blood|eQTL Lung|eQTL Muscle_Skeletal|eQTL
Pituitary|eQTL
Number of selected tissue – G = 10
Artery_Tibial|eQTL Cells_Cultured_fibroblasts|eQTL
Colon_Sigmoid|eQTL Skin_Not_Sun_Exposed_Suprapubic|eQTL
Adipose_Visceral_Omentum|eQTL Heart_Atrial_Appendage|eQTL
Whole_Blood|eQTL Lung|eQTL Muscle_Skeletal|eQTL
Pituitary|eQTL
[1] “p-value cutoff(0.05/num_tissue) =
0.00208333333333333”
Number of selected tissue – fisher = 10
Adipose_Visceral_Omentum|eQTL Adipose_Subcutaneous|eQTL
Muscle_Skeletal|eQTL Heart_Atrial_Appendage|eQTL Pancreas|eQTL
Artery_Aorta|eQTL Thyroid|eQTL Whole_Blood|eQTL
Skin_Not_Sun_Exposed_Suprapubic|eQTL
Skin_Sun_Exposed_Lower_leg|eQTL
Number of selected tissue – G
= 10
Adipose_Visceral_Omentum|eQTL Adipose_Subcutaneous|eQTL
Muscle_Skeletal|eQTL Heart_Atrial_Appendage|eQTL Pancreas|eQTL
Artery_Aorta|eQTL Thyroid|eQTL Whole_Blood|eQTL
Skin_Not_Sun_Exposed_Suprapubic|eQTL
Skin_Sun_Exposed_Lower_leg|eQTL
[1] “p-value cutoff(0.05/num_tissue) =
0.00208333333333333”
Number of selected tissue – fisher = 10
Whole_Blood|eQTL Cells_Cultured_fibroblasts|eQTL
Skin_Not_Sun_Exposed_Suprapubic|eQTL Adipose_Subcutaneous|eQTL
Colon_Transverse|eQTL Esophagus_Mucosa|eQTL Liver|eQTL
Heart_Left_Ventricle|eQTL Esophagus_Muscularis|eQTL
Thyroid|eQTL
Number of selected tissue – G = 10
Whole_Blood|eQTL Cells_Cultured_fibroblasts|eQTL
Skin_Not_Sun_Exposed_Suprapubic|eQTL Adipose_Subcutaneous|eQTL
Colon_Transverse|eQTL Esophagus_Mucosa|eQTL Liver|eQTL
Heart_Left_Ventricle|eQTL Esophagus_Muscularis|eQTL
Thyroid|eQTL
[1] “p-value cutoff(0.05/num_tissue) =
0.00208333333333333”
Number of selected tissue – fisher = 10
Spleen|eQTL Whole_Blood|eQTL Artery_Tibial|eQTL Lung|eQTL Liver|eQTL
Thyroid|eQTL Esophagus_Mucosa|eQTL Pancreas|eQTL
Skin_Not_Sun_Exposed_Suprapubic|eQTL
Cells_Cultured_fibroblasts|eQTL
Number of selected tissue – G
= 10
Spleen|eQTL Whole_Blood|eQTL Artery_Tibial|eQTL Lung|eQTL
Liver|eQTL Thyroid|eQTL Esophagus_Mucosa|eQTL Pancreas|eQTL
Skin_Not_Sun_Exposed_Suprapubic|eQTL
Cells_Cultured_fibroblasts|eQTL
[1] “p-value cutoff(0.05/num_tissue) =
0.00208333333333333”
Number of selected tissue – fisher = 2
Spleen|eQTL Heart_Atrial_Appendage|eQTL
Number of
selected tissue – G = 2
Spleen|eQTL
Heart_Atrial_Appendage|eQTL
[1] “p-value cutoff(0.05/num_tissue) =
0.00208333333333333”
Number of selected tissue – fisher = 10
Adipose_Subcutaneous|eQTL Whole_Blood|eQTL Colon_Sigmoid|eQTL
Cells_Cultured_fibroblasts|eQTL Thyroid|eQTL Esophagus_Muscularis|eQTL
Skin_Sun_Exposed_Lower_leg|eQTL Liver|eQTL Muscle_Skeletal|eQTL
Heart_Atrial_Appendage|eQTL
Number of selected tissue – G =
10
Adipose_Subcutaneous|eQTL Whole_Blood|eQTL Colon_Sigmoid|eQTL
Cells_Cultured_fibroblasts|eQTL Thyroid|eQTL Esophagus_Muscularis|eQTL
Skin_Sun_Exposed_Lower_leg|eQTL Liver|eQTL Muscle_Skeletal|eQTL
Heart_Atrial_Appendage|eQTL
[1] “p-value cutoff(0.05/num_tissue) =
0.00208333333333333”
Number of selected tissue – fisher = 10
Artery_Tibial|eQTL Muscle_Skeletal|eQTL Adrenal_Gland|eQTL
Whole_Blood|eQTL Spleen|eQTL Artery_Aorta|eQTL Pancreas|eQTL
Skin_Sun_Exposed_Lower_leg|eQTL Heart_Atrial_Appendage|eQTL
Adipose_Visceral_Omentum|eQTL
Number of selected tissue – G =
10
Artery_Tibial|eQTL Muscle_Skeletal|eQTL Adrenal_Gland|eQTL
Whole_Blood|eQTL Spleen|eQTL Artery_Aorta|eQTL Pancreas|eQTL
Skin_Sun_Exposed_Lower_leg|eQTL Heart_Atrial_Appendage|eQTL
Adipose_Visceral_Omentum|eQTL
[1] “p-value cutoff(0.05/num_tissue) =
0.00208333333333333”
Number of selected tissue – fisher = 10
Whole_Blood|eQTL Pancreas|eQTL Cells_Cultured_fibroblasts|eQTL
Adipose_Visceral_Omentum|eQTL Lung|eQTL Artery_Aorta|eQTL Thyroid|eQTL
Artery_Tibial|eQTL Skin_Not_Sun_Exposed_Suprapubic|eQTL
Esophagus_Muscularis|eQTL
Number of selected tissue – G = 10
Whole_Blood|eQTL Pancreas|eQTL Cells_Cultured_fibroblasts|eQTL
Adipose_Visceral_Omentum|eQTL Lung|eQTL Artery_Aorta|eQTL Thyroid|eQTL
Artery_Tibial|eQTL Skin_Not_Sun_Exposed_Suprapubic|eQTL
Esophagus_Muscularis|eQTL
[1] “p-value cutoff(0.05/num_tissue) =
0.00208333333333333”
Number of selected tissue – fisher = 10
Whole_Blood|eQTL Cells_Cultured_fibroblasts|eQTL
Skin_Not_Sun_Exposed_Suprapubic|eQTL Esophagus_Muscularis|eQTL Lung|eQTL
Muscle_Skeletal|eQTL Liver|eQTL Artery_Aorta|eQTL
Heart_Atrial_Appendage|eQTL Spleen|eQTL
Number of selected
tissue – G = 10
Whole_Blood|eQTL Cells_Cultured_fibroblasts|eQTL
Skin_Not_Sun_Exposed_Suprapubic|eQTL Esophagus_Muscularis|eQTL Lung|eQTL
Muscle_Skeletal|eQTL Liver|eQTL Artery_Aorta|eQTL
Heart_Atrial_Appendage|eQTL Spleen|eQTL
[1] “p-value cutoff(0.05/num_tissue) = 0.0015625”
Number of selected tissue – fisher = 10
Pituitary|eQTL
Artery_Tibial|eQTL Brain_Cerebellum|eQTL Adipose_Subcutaneous|eQTL
Thyroid|eQTL Heart_Atrial_Appendage|eQTL Muscle_Skeletal|eQTL
Cells_Cultured_fibroblasts|eQTL Adipose_Visceral_Omentum|eQTL
Whole_Blood|eQTL
Number of selected tissue – G = 10
Pituitary|eQTL Artery_Tibial|eQTL Brain_Cerebellum|eQTL
Adipose_Subcutaneous|eQTL Thyroid|eQTL Heart_Atrial_Appendage|eQTL
Muscle_Skeletal|eQTL Cells_Cultured_fibroblasts|eQTL
Adipose_Visceral_Omentum|eQTL Whole_Blood|eQTL
colnames(converge_df) <- c("trait","num_EM_iter","converge")
cat("<br>")
DT::datatable(converge_df,caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black; font-size:150% ;','EM convergence '),options = list(pageLength = 30) )
cat("<br>")
converge_df <- c()
for (trait in trait_psy){
param <- readRDS(paste0(folder_results,trait,"/",trait,".thin1.shared_all.param.RDS"))
gwas_n <- samplesize[trait]
param_summarized_fisher <- summarize_param(param = param,gwas_n = gwas_n,enrichment_test = "fisher",alternative = "greater")
param_summarized_G <- summarize_param(param = param,gwas_n = gwas_n,enrichment_test = "G")
param_df <- data.frame(
group = names(param_summarized_fisher$group_size),
group_size = as.numeric(param_summarized_fisher$group_size[names(param_summarized_fisher$group_size)]),
group_pve = as.numeric(param_summarized_fisher$group_pve[names(param_summarized_fisher$group_size)]),
prop_heritability = as.numeric(param_summarized_fisher$prop_heritability[names(param_summarized_fisher$group_size)]),
log_enrichment = as.numeric(param_summarized_fisher$log_enrichment[names(param_summarized_fisher$group_size)]),
log_enrichment_se = as.numeric(param_summarized_fisher$log_enrichment_se[names(param_summarized_fisher$group_size)]),
enrichment_pval_fisher = as.numeric(param_summarized_fisher$enrichment_pval[names(param_summarized_fisher$group_size)]),
enrichment_pval_G = as.numeric(param_summarized_G$enrichment_pval[names(param_summarized_G$group_size)])
)
param_df$total_pve <- param_summarized_fisher$total_pve
param_df$prop_heritability <- paste0(round(param_df$prop_heritability * 100, 5), "%")
param_df <- param_df[order(param_df$enrichment_pval_fisher,decreasing = F),]
param_df_qtl <- param_df[-nrow(param_df),]
threshold <- 0.05/(nrow(param_df_qtl)-1)
cat("<br>")
cat(knitr::knit_print(DT::datatable(param_df, caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black; font-size:150% ;',trait,options = list(pageLength = 10)))))
cat("<br>")
cat("<br>")
cat("<br>")
print(paste0("p-value cutoff(0.05/num_tissue) = ",threshold))
cat("<br>")
cat("<br>")
cat(paste0("Number of selected tissue -- fisher = ",min(10,sum(param_df_qtl$enrichment_pval_fisher < threshold)),"\n"))
cat("<br>")
cat(paste0(
head(param_df_qtl$group[param_df_qtl$enrichment_pval_fisher < threshold], 10),
collapse = " "
))
cat("<br>")
cat("<br>")
cat("<br>")
cat(paste0("Number of selected tissue -- G = ",min(10,sum(param_df_qtl$enrichment_pval_G < threshold)),"\n"))
cat("<br>")
cat(paste0(
head(param_df_qtl$group[param_df_qtl$enrichment_pval_G < threshold], 10),
collapse = " "
))
cat("<br>")
cat("<br>")
cat("<br>")
EM_iter <- length(param$loglik_iters)
converge <- param$converged
converge_df <- rbind(converge_df,c(trait,EM_iter,converge))
}
[1] “p-value cutoff(0.05/num_tissue) =
0.00714285714285714”
Number of selected tissue – fisher = 8
Brain_Cerebellar_Hemisphere|eQTL Brain_Cerebellum|eQTL
Brain_Putamen_basal_ganglia|eQTL Brain_Hypothalamus|eQTL
Brain_Cortex|eQTL Brain_Nucleus_accumbens_basal_ganglia|eQTL
Brain_Frontal_Cortex_BA9|eQTL
Brain_Caudate_basal_ganglia|eQTL
Number of selected tissue –
G = 8
Brain_Cerebellar_Hemisphere|eQTL Brain_Cerebellum|eQTL
Brain_Putamen_basal_ganglia|eQTL Brain_Hypothalamus|eQTL
Brain_Cortex|eQTL Brain_Nucleus_accumbens_basal_ganglia|eQTL
Brain_Frontal_Cortex_BA9|eQTL
Brain_Caudate_basal_ganglia|eQTL
[1] “p-value cutoff(0.05/num_tissue) =
0.00714285714285714”
Number of selected tissue – fisher = 3
Brain_Frontal_Cortex_BA9|eQTL Brain_Cerebellum|eQTL
Brain_Putamen_basal_ganglia|eQTL
Number of selected tissue –
G = 3
Brain_Frontal_Cortex_BA9|eQTL Brain_Cerebellum|eQTL
Brain_Putamen_basal_ganglia|eQTL
[1] “p-value cutoff(0.05/num_tissue) =
0.00714285714285714”
Number of selected tissue – fisher = 8
Brain_Nucleus_accumbens_basal_ganglia|eQTL
Brain_Caudate_basal_ganglia|eQTL Brain_Cerebellar_Hemisphere|eQTL
Brain_Frontal_Cortex_BA9|eQTL Brain_Cortex|eQTL Brain_Hypothalamus|eQTL
Brain_Cerebellum|eQTL Brain_Putamen_basal_ganglia|eQTL
Number
of selected tissue – G = 8
Brain_Nucleus_accumbens_basal_ganglia|eQTL
Brain_Caudate_basal_ganglia|eQTL Brain_Cerebellar_Hemisphere|eQTL
Brain_Frontal_Cortex_BA9|eQTL Brain_Cortex|eQTL Brain_Hypothalamus|eQTL
Brain_Cerebellum|eQTL
Brain_Putamen_basal_ganglia|eQTL
[1] “p-value cutoff(0.05/num_tissue) =
0.00714285714285714”
Number of selected tissue – fisher = 3
Brain_Nucleus_accumbens_basal_ganglia|eQTL
Brain_Caudate_basal_ganglia|eQTL Brain_Cerebellum|eQTL
Number
of selected tissue – G = 3
Brain_Nucleus_accumbens_basal_ganglia|eQTL
Brain_Caudate_basal_ganglia|eQTL
Brain_Cerebellum|eQTL
[1] “p-value cutoff(0.05/num_tissue) =
0.00714285714285714”
Number of selected tissue – fisher = 3
Brain_Cerebellum|eQTL Brain_Hypothalamus|eQTL
Brain_Cortex|eQTL
Number of selected tissue – G = 3
Brain_Cerebellum|eQTL Brain_Hypothalamus|eQTL
Brain_Cortex|eQTL
[1] “p-value cutoff(0.05/num_tissue) =
0.00714285714285714”
Number of selected tissue – fisher = 1
Brain_Cortex|eQTL
Number of selected tissue – G = 1
Brain_Cortex|eQTL
[1] “p-value cutoff(0.05/num_tissue) =
0.00714285714285714”
Number of selected tissue – fisher = 4
Brain_Cortex|eQTL Brain_Cerebellar_Hemisphere|eQTL
Brain_Caudate_basal_ganglia|eQTL Brain_Cerebellum|eQTL
Number
of selected tissue – G = 4
Brain_Cortex|eQTL
Brain_Cerebellar_Hemisphere|eQTL Brain_Caudate_basal_ganglia|eQTL
Brain_Cerebellum|eQTL
colnames(converge_df) <- c("trait","num_EM_iter","converge")
cat("<br>")
DT::datatable(converge_df,caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black; font-size:150% ;','EM convergence '),options = list(pageLength = 30) )
cat("<br>")
sessionInfo()
R version 4.2.0 (2022-04-22)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)
Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so
locale:
[1] C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] ctwas_0.5.19
loaded via a namespace (and not attached):
[1] colorspace_2.0-3 rjson_0.2.21
[3] ellipsis_0.3.2 rprojroot_2.0.3
[5] XVector_0.36.0 locuszoomr_0.2.1
[7] GenomicRanges_1.48.0 base64enc_0.1-3
[9] fs_1.5.2 rstudioapi_0.13
[11] DT_0.22 ggrepel_0.9.1
[13] bit64_4.0.5 AnnotationDbi_1.58.0
[15] fansi_1.0.3 xml2_1.3.3
[17] codetools_0.2-18 logging_0.10-108
[19] cachem_1.0.6 knitr_1.39
[21] jsonlite_1.8.0 workflowr_1.7.0
[23] Rsamtools_2.12.0 dbplyr_2.1.1
[25] png_0.1-7 readr_2.1.2
[27] compiler_4.2.0 httr_1.4.3
[29] assertthat_0.2.1 Matrix_1.5-3
[31] fastmap_1.1.0 lazyeval_0.2.2
[33] cli_3.6.1 later_1.3.0
[35] htmltools_0.5.2 prettyunits_1.1.1
[37] tools_4.2.0 gtable_0.3.0
[39] glue_1.6.2 GenomeInfoDbData_1.2.8
[41] dplyr_1.1.4 rappdirs_0.3.3
[43] Rcpp_1.0.12 Biobase_2.56.0
[45] jquerylib_0.1.4 vctrs_0.6.5
[47] Biostrings_2.64.0 rtracklayer_1.56.0
[49] crosstalk_1.2.0 xfun_0.41
[51] stringr_1.5.1 irlba_2.3.5
[53] lifecycle_1.0.4 restfulr_0.0.14
[55] ensembldb_2.20.2 XML_3.99-0.14
[57] zlibbioc_1.42.0 zoo_1.8-10
[59] scales_1.3.0 gggrid_0.2-0
[61] hms_1.1.1 promises_1.2.0.1
[63] MatrixGenerics_1.8.0 ProtGenerics_1.28.0
[65] parallel_4.2.0 SummarizedExperiment_1.26.1
[67] AnnotationFilter_1.20.0 LDlinkR_1.2.3
[69] yaml_2.3.5 curl_4.3.2
[71] memoise_2.0.1 ggplot2_3.5.1
[73] sass_0.4.1 biomaRt_2.54.1
[75] stringi_1.7.6 RSQLite_2.3.1
[77] S4Vectors_0.34.0 BiocIO_1.6.0
[79] GenomicFeatures_1.48.3 BiocGenerics_0.42.0
[81] filelock_1.0.2 BiocParallel_1.30.3
[83] repr_1.1.4 GenomeInfoDb_1.39.9
[85] rlang_1.1.2 pkgconfig_2.0.3
[87] matrixStats_0.62.0 bitops_1.0-7
[89] evaluate_0.15 lattice_0.20-45
[91] purrr_1.0.2 GenomicAlignments_1.32.0
[93] htmlwidgets_1.5.4 cowplot_1.1.1
[95] bit_4.0.4 tidyselect_1.2.0
[97] magrittr_2.0.3 AMR_2.1.1
[99] R6_2.5.1 IRanges_2.30.0
[101] generics_0.1.2 DelayedArray_0.22.0
[103] DBI_1.2.2 pgenlibr_0.3.3
[105] pillar_1.9.0 whisker_0.4
[107] mixsqp_0.3-43 KEGGREST_1.36.3
[109] RCurl_1.98-1.7 tibble_3.2.1
[111] crayon_1.5.1 utf8_1.2.2
[113] BiocFileCache_2.4.0 plotly_4.10.0
[115] tzdb_0.4.0 rmarkdown_2.25
[117] progress_1.2.2 grid_4.2.0
[119] data.table_1.14.2 blob_1.2.3
[121] git2r_0.30.1 digest_0.6.29
[123] tidyr_1.3.0 httpuv_1.6.5
[125] stats4_4.2.0 munsell_0.5.0
[127] viridisLite_0.4.0 skimr_2.1.4
[129] bslib_0.3.1