Last updated: 2025-05-25

Checks: 6 1

Knit directory: multigroup_ctwas_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20231112) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version c791833. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    cv/

Unstaged changes:
    Modified:   analysis/realdata_final_tissueselection_mingene0_exclude_brainprocessed.Rmd
    Modified:   analysis/realdata_final_tissueselection_mingene0_splicing_exclude_brainprocessed.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/realdata_final_tissueselection_mingene0_exclude_brainprocessed.Rmd) and HTML (docs/realdata_final_tissueselection_mingene0_exclude_brainprocessed.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd c791833 XSun 2025-05-21 update
html c791833 XSun 2025-05-21 update

Introduction

  • For non-psychiatric traits, we ran a cTWAS analysis using sQTL data from all 49 GTEx tissues.

  • For psychiatric traits, we used only the 9 GTEx brain tissues.

  • We ranked tissues by their G-test p-values & Fisher p-values and selected those passing the Bonferroni threshold (0.05 divided by the number of tissues) for the multi-group cTWAS analysis.

  • Default settings were used for computing z-scores, assembling input data, and estimating model parameters.

Mem: 50g/node got killed, 100g/node

  1. Remove tissues with <200 samples. (2) Remove some tissues that are not related to our traits, including Testis, Nerve Tibial, Ovary, Prostate, Uterus, Vagina, Breast Mammary Tissue.
z_gene <- compute_gene_z(z_snp, weights, ncore=10)
res <- assemble_region_data(region_info, 
                                z_snp, 
                                z_gene, 
                                weights,
                                snp_map,
                                maxSNP = Inf,
                                min_group_size = 100,
                                thin = 1,
                                adjust_boundary_genes = TRUE,
                                ncore = 15)
param <- est_param(region_data, 
                       group_prior_var_structure = "shared_all",
                       null_method = "ctwas",
                       niter_prefit = 3,
                       min_gene = 0,
                       min_var = 2,                          
                       min_p_single_effect = 0.8,
                       niter = 200, 
                       ncore = 15,
                       verbose=TRUE)
library(ctwas)
Warning: replacing previous import 'utils::download.file' by
'restfulr::download.file' when loading 'rtracklayer'
source("/project/xinhe/xsun/multi_group_ctwas/data/samplesize.R")

trait_nopsy <- c("LDL-ukb-d-30780_irnt","aFib-ebi-a-GCST006414","ATH_gtexukb","BMI-panukb","HB-panukb",
             "Height-panukb","HTN-panukb","IBD-ebi-a-GCST004131","PLT-panukb","RA-panukb","RBC-panukb",
             "SBP-ukb-a-360","T1D-GCST90014023","WBC-ieu-b-30","T2D-panukb")

trait_psy <- c("SCZ-ieu-b-5102","ASD-ieu-a-1185","BIP-ieu-b-5110","MDD-ieu-b-102","PD-ieu-b-7","ADHD-ieu-a-1183","NS-ukb-a-230")

DT::datatable(matrix())
folder_results <- "/project/xinhe/xsun/multi_group_ctwas/21.tissue_selection_0511/results/E_thin1_shared_all_mingene0_exclude_brainprocess/"

Non-psychiatric traits

Tissue selection

converge_df <- c()
for (trait in trait_nopsy){

  param <- readRDS(paste0(folder_results,trait,"/",trait,".thin1.shared_all.param.RDS"))

  gwas_n <- samplesize[trait]

  param_summarized_fisher <- summarize_param(param = param,gwas_n = gwas_n,enrichment_test = "fisher",alternative = "greater")
  param_summarized_G <- summarize_param(param = param,gwas_n = gwas_n,enrichment_test = "G")

  param_df <- data.frame(
    group = names(param_summarized_fisher$group_size),
    group_size = as.numeric(param_summarized_fisher$group_size[names(param_summarized_fisher$group_size)]),
    group_pve = as.numeric(param_summarized_fisher$group_pve[names(param_summarized_fisher$group_size)]),
    prop_heritability = as.numeric(param_summarized_fisher$prop_heritability[names(param_summarized_fisher$group_size)]),
    log_enrichment = as.numeric(param_summarized_fisher$log_enrichment[names(param_summarized_fisher$group_size)]),
    log_enrichment_se = as.numeric(param_summarized_fisher$log_enrichment_se[names(param_summarized_fisher$group_size)]),
    enrichment_pval_fisher = as.numeric(param_summarized_fisher$enrichment_pval[names(param_summarized_fisher$group_size)]),
    enrichment_pval_G = as.numeric(param_summarized_G$enrichment_pval[names(param_summarized_G$group_size)])
  )

  param_df$total_pve <- param_summarized_fisher$total_pve

  param_df$prop_heritability <- paste0(round(param_df$prop_heritability * 100, 5), "%")

  param_df <- param_df[order(param_df$enrichment_pval_fisher,decreasing = F),]

  param_df_qtl <- param_df[-nrow(param_df),]
  threshold <- 0.05/(nrow(param_df_qtl)-1)



  cat("<br>")
  cat(knitr::knit_print(DT::datatable(param_df, caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black;  font-size:150% ;',trait,options = list(pageLength = 10)))))
  cat("<br>")


  cat("<br>")
  cat("<br>")
  print(paste0("p-value cutoff(0.05/num_tissue) = ",threshold))
  cat("<br>")
  cat("<br>")
  cat(paste0("Number of selected tissue -- fisher = ",min(10,sum(param_df_qtl$enrichment_pval_fisher < threshold)),"\n"))
  cat("<br>")
  cat(paste0(
    head(param_df_qtl$group[param_df_qtl$enrichment_pval_fisher < threshold], 10),
    collapse = " "
  ))
  cat("<br>")
  cat("<br>")
  cat("<br>")
    cat(paste0("Number of selected tissue -- G = ",min(10,sum(param_df_qtl$enrichment_pval_G < threshold)),"\n"))
  cat("<br>")
  cat(paste0(
    head(param_df_qtl$group[param_df_qtl$enrichment_pval_G < threshold], 10),
    collapse = " "
  ))
  cat("<br>")
  cat("<br>")
  cat("<br>")

  EM_iter <- length(param$loglik_iters)
  converge <- param$converged
  converge_df <- rbind(converge_df,c(trait,EM_iter,converge))
}





[1] “p-value cutoff(0.05/num_tissue) = 0.00208333333333333”

Number of selected tissue – fisher = 10
Liver|eQTL Whole_Blood|eQTL Lung|eQTL Spleen|eQTL Esophagus_Gastroesophageal_Junction|eQTL Esophagus_Mucosa|eQTL Colon_Transverse|eQTL Artery_Coronary|eQTL Cells_Cultured_fibroblasts|eQTL Pancreas|eQTL


Number of selected tissue – G = 10
Liver|eQTL Whole_Blood|eQTL Lung|eQTL Spleen|eQTL Esophagus_Gastroesophageal_Junction|eQTL Esophagus_Mucosa|eQTL Colon_Transverse|eQTL Artery_Coronary|eQTL Cells_Cultured_fibroblasts|eQTL Pancreas|eQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.00208333333333333”

Number of selected tissue – fisher = 10
Heart_Atrial_Appendage|eQTL Heart_Left_Ventricle|eQTL Esophagus_Muscularis|eQTL Artery_Aorta|eQTL Muscle_Skeletal|eQTL Spleen|eQTL Artery_Tibial|eQTL Thyroid|eQTL Cells_Cultured_fibroblasts|eQTL Lung|eQTL


Number of selected tissue – G = 10
Heart_Atrial_Appendage|eQTL Heart_Left_Ventricle|eQTL Esophagus_Muscularis|eQTL Artery_Aorta|eQTL Muscle_Skeletal|eQTL Spleen|eQTL Artery_Tibial|eQTL Thyroid|eQTL Cells_Cultured_fibroblasts|eQTL Lung|eQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.00208333333333333”

Number of selected tissue – fisher = 10
Spleen|eQTL Thyroid|eQTL Heart_Left_Ventricle|eQTL Esophagus_Muscularis|eQTL Heart_Atrial_Appendage|eQTL Colon_Transverse|eQTL Artery_Tibial|eQTL Liver|eQTL Adipose_Subcutaneous|eQTL Skin_Not_Sun_Exposed_Suprapubic|eQTL


Number of selected tissue – G = 10
Spleen|eQTL Thyroid|eQTL Heart_Left_Ventricle|eQTL Esophagus_Muscularis|eQTL Heart_Atrial_Appendage|eQTL Colon_Transverse|eQTL Artery_Tibial|eQTL Liver|eQTL Adipose_Subcutaneous|eQTL Skin_Not_Sun_Exposed_Suprapubic|eQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.0015625”

Number of selected tissue – fisher = 10
Cells_Cultured_fibroblasts|eQTL Brain_Cerebellar_Hemisphere|eQTL Artery_Aorta|eQTL Brain_Cortex|eQTL Esophagus_Mucosa|eQTL Heart_Left_Ventricle|eQTL Brain_Cerebellum|eQTL Muscle_Skeletal|eQTL Brain_Putamen_basal_ganglia|eQTL Spleen|eQTL


Number of selected tissue – G = 10
Cells_Cultured_fibroblasts|eQTL Brain_Cerebellar_Hemisphere|eQTL Artery_Aorta|eQTL Brain_Cortex|eQTL Esophagus_Mucosa|eQTL Heart_Left_Ventricle|eQTL Brain_Cerebellum|eQTL Muscle_Skeletal|eQTL Brain_Putamen_basal_ganglia|eQTL Spleen|eQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.00208333333333333”

Number of selected tissue – fisher = 10
Adipose_Subcutaneous|eQTL Cells_Cultured_fibroblasts|eQTL Heart_Atrial_Appendage|eQTL Whole_Blood|eQTL Skin_Not_Sun_Exposed_Suprapubic|eQTL Thyroid|eQTL Esophagus_Gastroesophageal_Junction|eQTL Lung|eQTL Liver|eQTL Colon_Sigmoid|eQTL


Number of selected tissue – G = 10
Adipose_Subcutaneous|eQTL Cells_Cultured_fibroblasts|eQTL Heart_Atrial_Appendage|eQTL Whole_Blood|eQTL Skin_Not_Sun_Exposed_Suprapubic|eQTL Thyroid|eQTL Esophagus_Gastroesophageal_Junction|eQTL Lung|eQTL Liver|eQTL Colon_Sigmoid|eQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.00208333333333333”

Number of selected tissue – fisher = 10
Artery_Tibial|eQTL Cells_Cultured_fibroblasts|eQTL Colon_Sigmoid|eQTL Skin_Not_Sun_Exposed_Suprapubic|eQTL Adipose_Visceral_Omentum|eQTL Heart_Atrial_Appendage|eQTL Whole_Blood|eQTL Lung|eQTL Muscle_Skeletal|eQTL Pituitary|eQTL


Number of selected tissue – G = 10
Artery_Tibial|eQTL Cells_Cultured_fibroblasts|eQTL Colon_Sigmoid|eQTL Skin_Not_Sun_Exposed_Suprapubic|eQTL Adipose_Visceral_Omentum|eQTL Heart_Atrial_Appendage|eQTL Whole_Blood|eQTL Lung|eQTL Muscle_Skeletal|eQTL Pituitary|eQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.00208333333333333”

Number of selected tissue – fisher = 10
Adipose_Visceral_Omentum|eQTL Adipose_Subcutaneous|eQTL Muscle_Skeletal|eQTL Heart_Atrial_Appendage|eQTL Pancreas|eQTL Artery_Aorta|eQTL Thyroid|eQTL Whole_Blood|eQTL Skin_Not_Sun_Exposed_Suprapubic|eQTL Skin_Sun_Exposed_Lower_leg|eQTL


Number of selected tissue – G = 10
Adipose_Visceral_Omentum|eQTL Adipose_Subcutaneous|eQTL Muscle_Skeletal|eQTL Heart_Atrial_Appendage|eQTL Pancreas|eQTL Artery_Aorta|eQTL Thyroid|eQTL Whole_Blood|eQTL Skin_Not_Sun_Exposed_Suprapubic|eQTL Skin_Sun_Exposed_Lower_leg|eQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.00208333333333333”

Number of selected tissue – fisher = 10
Whole_Blood|eQTL Cells_Cultured_fibroblasts|eQTL Skin_Not_Sun_Exposed_Suprapubic|eQTL Adipose_Subcutaneous|eQTL Colon_Transverse|eQTL Esophagus_Mucosa|eQTL Liver|eQTL Heart_Left_Ventricle|eQTL Esophagus_Muscularis|eQTL Thyroid|eQTL


Number of selected tissue – G = 10
Whole_Blood|eQTL Cells_Cultured_fibroblasts|eQTL Skin_Not_Sun_Exposed_Suprapubic|eQTL Adipose_Subcutaneous|eQTL Colon_Transverse|eQTL Esophagus_Mucosa|eQTL Liver|eQTL Heart_Left_Ventricle|eQTL Esophagus_Muscularis|eQTL Thyroid|eQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.00208333333333333”

Number of selected tissue – fisher = 10
Spleen|eQTL Whole_Blood|eQTL Artery_Tibial|eQTL Lung|eQTL Liver|eQTL Thyroid|eQTL Esophagus_Mucosa|eQTL Pancreas|eQTL Skin_Not_Sun_Exposed_Suprapubic|eQTL Cells_Cultured_fibroblasts|eQTL


Number of selected tissue – G = 10
Spleen|eQTL Whole_Blood|eQTL Artery_Tibial|eQTL Lung|eQTL Liver|eQTL Thyroid|eQTL Esophagus_Mucosa|eQTL Pancreas|eQTL Skin_Not_Sun_Exposed_Suprapubic|eQTL Cells_Cultured_fibroblasts|eQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.00208333333333333”

Number of selected tissue – fisher = 2
Spleen|eQTL Heart_Atrial_Appendage|eQTL


Number of selected tissue – G = 2
Spleen|eQTL Heart_Atrial_Appendage|eQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.00208333333333333”

Number of selected tissue – fisher = 10
Adipose_Subcutaneous|eQTL Whole_Blood|eQTL Colon_Sigmoid|eQTL Cells_Cultured_fibroblasts|eQTL Thyroid|eQTL Esophagus_Muscularis|eQTL Skin_Sun_Exposed_Lower_leg|eQTL Liver|eQTL Muscle_Skeletal|eQTL Heart_Atrial_Appendage|eQTL


Number of selected tissue – G = 10
Adipose_Subcutaneous|eQTL Whole_Blood|eQTL Colon_Sigmoid|eQTL Cells_Cultured_fibroblasts|eQTL Thyroid|eQTL Esophagus_Muscularis|eQTL Skin_Sun_Exposed_Lower_leg|eQTL Liver|eQTL Muscle_Skeletal|eQTL Heart_Atrial_Appendage|eQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.00208333333333333”

Number of selected tissue – fisher = 10
Artery_Tibial|eQTL Muscle_Skeletal|eQTL Adrenal_Gland|eQTL Whole_Blood|eQTL Spleen|eQTL Artery_Aorta|eQTL Pancreas|eQTL Skin_Sun_Exposed_Lower_leg|eQTL Heart_Atrial_Appendage|eQTL Adipose_Visceral_Omentum|eQTL


Number of selected tissue – G = 10
Artery_Tibial|eQTL Muscle_Skeletal|eQTL Adrenal_Gland|eQTL Whole_Blood|eQTL Spleen|eQTL Artery_Aorta|eQTL Pancreas|eQTL Skin_Sun_Exposed_Lower_leg|eQTL Heart_Atrial_Appendage|eQTL Adipose_Visceral_Omentum|eQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.00208333333333333”

Number of selected tissue – fisher = 10
Whole_Blood|eQTL Pancreas|eQTL Cells_Cultured_fibroblasts|eQTL Adipose_Visceral_Omentum|eQTL Lung|eQTL Artery_Aorta|eQTL Thyroid|eQTL Artery_Tibial|eQTL Skin_Not_Sun_Exposed_Suprapubic|eQTL Esophagus_Muscularis|eQTL


Number of selected tissue – G = 10
Whole_Blood|eQTL Pancreas|eQTL Cells_Cultured_fibroblasts|eQTL Adipose_Visceral_Omentum|eQTL Lung|eQTL Artery_Aorta|eQTL Thyroid|eQTL Artery_Tibial|eQTL Skin_Not_Sun_Exposed_Suprapubic|eQTL Esophagus_Muscularis|eQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.00208333333333333”

Number of selected tissue – fisher = 10
Whole_Blood|eQTL Cells_Cultured_fibroblasts|eQTL Skin_Not_Sun_Exposed_Suprapubic|eQTL Esophagus_Muscularis|eQTL Lung|eQTL Muscle_Skeletal|eQTL Liver|eQTL Artery_Aorta|eQTL Heart_Atrial_Appendage|eQTL Spleen|eQTL


Number of selected tissue – G = 10
Whole_Blood|eQTL Cells_Cultured_fibroblasts|eQTL Skin_Not_Sun_Exposed_Suprapubic|eQTL Esophagus_Muscularis|eQTL Lung|eQTL Muscle_Skeletal|eQTL Liver|eQTL Artery_Aorta|eQTL Heart_Atrial_Appendage|eQTL Spleen|eQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.0015625”

Number of selected tissue – fisher = 10
Pituitary|eQTL Artery_Tibial|eQTL Brain_Cerebellum|eQTL Adipose_Subcutaneous|eQTL Thyroid|eQTL Heart_Atrial_Appendage|eQTL Muscle_Skeletal|eQTL Cells_Cultured_fibroblasts|eQTL Adipose_Visceral_Omentum|eQTL Whole_Blood|eQTL


Number of selected tissue – G = 10
Pituitary|eQTL Artery_Tibial|eQTL Brain_Cerebellum|eQTL Adipose_Subcutaneous|eQTL Thyroid|eQTL Heart_Atrial_Appendage|eQTL Muscle_Skeletal|eQTL Cells_Cultured_fibroblasts|eQTL Adipose_Visceral_Omentum|eQTL Whole_Blood|eQTL


EM convergence

colnames(converge_df) <- c("trait","num_EM_iter","converge")
cat("<br>")


DT::datatable(converge_df,caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black;  font-size:150% ;','EM convergence '),options = list(pageLength = 30) )
cat("<br>")


Psychiatric traits

Tissue selection

converge_df <- c()
for (trait in trait_psy){
  
  param <- readRDS(paste0(folder_results,trait,"/",trait,".thin1.shared_all.param.RDS"))
  
  gwas_n <- samplesize[trait]

  param_summarized_fisher <- summarize_param(param = param,gwas_n = gwas_n,enrichment_test = "fisher",alternative = "greater")
  param_summarized_G <- summarize_param(param = param,gwas_n = gwas_n,enrichment_test = "G")
  
  param_df <- data.frame(
    group = names(param_summarized_fisher$group_size),
    group_size = as.numeric(param_summarized_fisher$group_size[names(param_summarized_fisher$group_size)]),
    group_pve = as.numeric(param_summarized_fisher$group_pve[names(param_summarized_fisher$group_size)]),
    prop_heritability = as.numeric(param_summarized_fisher$prop_heritability[names(param_summarized_fisher$group_size)]),
    log_enrichment = as.numeric(param_summarized_fisher$log_enrichment[names(param_summarized_fisher$group_size)]),
    log_enrichment_se = as.numeric(param_summarized_fisher$log_enrichment_se[names(param_summarized_fisher$group_size)]),
    enrichment_pval_fisher = as.numeric(param_summarized_fisher$enrichment_pval[names(param_summarized_fisher$group_size)]),
    enrichment_pval_G = as.numeric(param_summarized_G$enrichment_pval[names(param_summarized_G$group_size)])
  )

  param_df$total_pve <- param_summarized_fisher$total_pve
  
  param_df$prop_heritability <- paste0(round(param_df$prop_heritability * 100, 5), "%")
  
  param_df <- param_df[order(param_df$enrichment_pval_fisher,decreasing = F),]
  
  param_df_qtl <- param_df[-nrow(param_df),]
  threshold <- 0.05/(nrow(param_df_qtl)-1)
  
  
  
  cat("<br>")
  cat(knitr::knit_print(DT::datatable(param_df, caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black;  font-size:150% ;',trait,options = list(pageLength = 10)))))
  cat("<br>")
  
  
  cat("<br>")
  cat("<br>")
  print(paste0("p-value cutoff(0.05/num_tissue) = ",threshold))
  cat("<br>")
  cat("<br>")
  cat(paste0("Number of selected tissue -- fisher = ",min(10,sum(param_df_qtl$enrichment_pval_fisher < threshold)),"\n"))
  cat("<br>")
  cat(paste0(
    head(param_df_qtl$group[param_df_qtl$enrichment_pval_fisher < threshold], 10), 
    collapse = " "
  ))
  cat("<br>")
  cat("<br>")
  cat("<br>")
    cat(paste0("Number of selected tissue -- G = ",min(10,sum(param_df_qtl$enrichment_pval_G < threshold)),"\n"))
  cat("<br>")
  cat(paste0(
    head(param_df_qtl$group[param_df_qtl$enrichment_pval_G < threshold], 10), 
    collapse = " "
  ))
  cat("<br>")
  cat("<br>")
  cat("<br>")
 
  EM_iter <- length(param$loglik_iters)
  converge <- param$converged
  converge_df <- rbind(converge_df,c(trait,EM_iter,converge))
}





[1] “p-value cutoff(0.05/num_tissue) = 0.00714285714285714”

Number of selected tissue – fisher = 8
Brain_Cerebellar_Hemisphere|eQTL Brain_Cerebellum|eQTL Brain_Putamen_basal_ganglia|eQTL Brain_Hypothalamus|eQTL Brain_Cortex|eQTL Brain_Nucleus_accumbens_basal_ganglia|eQTL Brain_Frontal_Cortex_BA9|eQTL Brain_Caudate_basal_ganglia|eQTL


Number of selected tissue – G = 8
Brain_Cerebellar_Hemisphere|eQTL Brain_Cerebellum|eQTL Brain_Putamen_basal_ganglia|eQTL Brain_Hypothalamus|eQTL Brain_Cortex|eQTL Brain_Nucleus_accumbens_basal_ganglia|eQTL Brain_Frontal_Cortex_BA9|eQTL Brain_Caudate_basal_ganglia|eQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.00714285714285714”

Number of selected tissue – fisher = 3
Brain_Frontal_Cortex_BA9|eQTL Brain_Cerebellum|eQTL Brain_Putamen_basal_ganglia|eQTL


Number of selected tissue – G = 3
Brain_Frontal_Cortex_BA9|eQTL Brain_Cerebellum|eQTL Brain_Putamen_basal_ganglia|eQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.00714285714285714”

Number of selected tissue – fisher = 8
Brain_Nucleus_accumbens_basal_ganglia|eQTL Brain_Caudate_basal_ganglia|eQTL Brain_Cerebellar_Hemisphere|eQTL Brain_Frontal_Cortex_BA9|eQTL Brain_Cortex|eQTL Brain_Hypothalamus|eQTL Brain_Cerebellum|eQTL Brain_Putamen_basal_ganglia|eQTL


Number of selected tissue – G = 8
Brain_Nucleus_accumbens_basal_ganglia|eQTL Brain_Caudate_basal_ganglia|eQTL Brain_Cerebellar_Hemisphere|eQTL Brain_Frontal_Cortex_BA9|eQTL Brain_Cortex|eQTL Brain_Hypothalamus|eQTL Brain_Cerebellum|eQTL Brain_Putamen_basal_ganglia|eQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.00714285714285714”

Number of selected tissue – fisher = 3
Brain_Nucleus_accumbens_basal_ganglia|eQTL Brain_Caudate_basal_ganglia|eQTL Brain_Cerebellum|eQTL


Number of selected tissue – G = 3
Brain_Nucleus_accumbens_basal_ganglia|eQTL Brain_Caudate_basal_ganglia|eQTL Brain_Cerebellum|eQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.00714285714285714”

Number of selected tissue – fisher = 3
Brain_Cerebellum|eQTL Brain_Hypothalamus|eQTL Brain_Cortex|eQTL


Number of selected tissue – G = 3
Brain_Cerebellum|eQTL Brain_Hypothalamus|eQTL Brain_Cortex|eQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.00714285714285714”

Number of selected tissue – fisher = 1
Brain_Cortex|eQTL


Number of selected tissue – G = 1
Brain_Cortex|eQTL






[1] “p-value cutoff(0.05/num_tissue) = 0.00714285714285714”

Number of selected tissue – fisher = 4
Brain_Cortex|eQTL Brain_Cerebellar_Hemisphere|eQTL Brain_Caudate_basal_ganglia|eQTL Brain_Cerebellum|eQTL


Number of selected tissue – G = 4
Brain_Cortex|eQTL Brain_Cerebellar_Hemisphere|eQTL Brain_Caudate_basal_ganglia|eQTL Brain_Cerebellum|eQTL


EM convergence

colnames(converge_df) <- c("trait","num_EM_iter","converge")
cat("<br>")


DT::datatable(converge_df,caption = htmltools::tags$caption( style = 'caption-side: left; text-align: left; color:black;  font-size:150% ;','EM convergence '),options = list(pageLength = 30) )
cat("<br>")



sessionInfo()
R version 4.2.0 (2022-04-22)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so

locale:
[1] C

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] ctwas_0.5.19

loaded via a namespace (and not attached):
  [1] colorspace_2.0-3            rjson_0.2.21               
  [3] ellipsis_0.3.2              rprojroot_2.0.3            
  [5] XVector_0.36.0              locuszoomr_0.2.1           
  [7] GenomicRanges_1.48.0        base64enc_0.1-3            
  [9] fs_1.5.2                    rstudioapi_0.13            
 [11] DT_0.22                     ggrepel_0.9.1              
 [13] bit64_4.0.5                 AnnotationDbi_1.58.0       
 [15] fansi_1.0.3                 xml2_1.3.3                 
 [17] codetools_0.2-18            logging_0.10-108           
 [19] cachem_1.0.6                knitr_1.39                 
 [21] jsonlite_1.8.0              workflowr_1.7.0            
 [23] Rsamtools_2.12.0            dbplyr_2.1.1               
 [25] png_0.1-7                   readr_2.1.2                
 [27] compiler_4.2.0              httr_1.4.3                 
 [29] assertthat_0.2.1            Matrix_1.5-3               
 [31] fastmap_1.1.0               lazyeval_0.2.2             
 [33] cli_3.6.1                   later_1.3.0                
 [35] htmltools_0.5.2             prettyunits_1.1.1          
 [37] tools_4.2.0                 gtable_0.3.0               
 [39] glue_1.6.2                  GenomeInfoDbData_1.2.8     
 [41] dplyr_1.1.4                 rappdirs_0.3.3             
 [43] Rcpp_1.0.12                 Biobase_2.56.0             
 [45] jquerylib_0.1.4             vctrs_0.6.5                
 [47] Biostrings_2.64.0           rtracklayer_1.56.0         
 [49] crosstalk_1.2.0             xfun_0.41                  
 [51] stringr_1.5.1               irlba_2.3.5                
 [53] lifecycle_1.0.4             restfulr_0.0.14            
 [55] ensembldb_2.20.2            XML_3.99-0.14              
 [57] zlibbioc_1.42.0             zoo_1.8-10                 
 [59] scales_1.3.0                gggrid_0.2-0               
 [61] hms_1.1.1                   promises_1.2.0.1           
 [63] MatrixGenerics_1.8.0        ProtGenerics_1.28.0        
 [65] parallel_4.2.0              SummarizedExperiment_1.26.1
 [67] AnnotationFilter_1.20.0     LDlinkR_1.2.3              
 [69] yaml_2.3.5                  curl_4.3.2                 
 [71] memoise_2.0.1               ggplot2_3.5.1              
 [73] sass_0.4.1                  biomaRt_2.54.1             
 [75] stringi_1.7.6               RSQLite_2.3.1              
 [77] S4Vectors_0.34.0            BiocIO_1.6.0               
 [79] GenomicFeatures_1.48.3      BiocGenerics_0.42.0        
 [81] filelock_1.0.2              BiocParallel_1.30.3        
 [83] repr_1.1.4                  GenomeInfoDb_1.39.9        
 [85] rlang_1.1.2                 pkgconfig_2.0.3            
 [87] matrixStats_0.62.0          bitops_1.0-7               
 [89] evaluate_0.15               lattice_0.20-45            
 [91] purrr_1.0.2                 GenomicAlignments_1.32.0   
 [93] htmlwidgets_1.5.4           cowplot_1.1.1              
 [95] bit_4.0.4                   tidyselect_1.2.0           
 [97] magrittr_2.0.3              AMR_2.1.1                  
 [99] R6_2.5.1                    IRanges_2.30.0             
[101] generics_0.1.2              DelayedArray_0.22.0        
[103] DBI_1.2.2                   pgenlibr_0.3.3             
[105] pillar_1.9.0                whisker_0.4                
[107] mixsqp_0.3-43               KEGGREST_1.36.3            
[109] RCurl_1.98-1.7              tibble_3.2.1               
[111] crayon_1.5.1                utf8_1.2.2                 
[113] BiocFileCache_2.4.0         plotly_4.10.0              
[115] tzdb_0.4.0                  rmarkdown_2.25             
[117] progress_1.2.2              grid_4.2.0                 
[119] data.table_1.14.2           blob_1.2.3                 
[121] git2r_0.30.1                digest_0.6.29              
[123] tidyr_1.3.0                 httpuv_1.6.5               
[125] stats4_4.2.0                munsell_0.5.0              
[127] viridisLite_0.4.0           skimr_2.1.4                
[129] bslib_0.3.1