Last updated: 2024-01-25

Checks: 6 1

Knit directory: multigroup_ctwas_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20231112) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 7561eb8. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory

Untracked files:
    Untracked:  analysis/CopyOfmulti_tissue_ldmerge_validation.Rmd
    Untracked:  analysis/multi_tissue_ldmerge_validation_susie_fit.Rmd
    Untracked:  analysis/multi_tissue_ldmerge_validation_xgboost_fit.Rmd

Unstaged changes:
    Modified:   analysis/multi_tissue_ldmerge_validation.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


Overview

The model is \(y=X*w\)

y is an n-dimensional vector representing gene-trait associations (n = number of genes), which can be:

  • z-scores computed by MAGMA
  • a binary vector indicating gene-trait relationships (genes with FDR < 0.05 as per MAGMA are marked 1).

If y is a z-score vector, it can be fitted using linear Susie

If y is a binarized vector, the model can be fitted using logistic Susie

Functions

library(gseasusie)
library(tidyverse)
library(GO.db)


color_sign = function(value) {
  if (value > 0) {
    color <- "#008000"
  } else if (value < 0) {
    color <- "#e00000"
  } else {
    color <- "#777"
  }
  list(color = color)
}


getGOTermName <- function(go_id) {
  result <- try(Term(GOTERM[[go_id]]), silent = TRUE)
  if (class(result) == "try-error") {
    return(NA)
  } else {
    return(result)
  }
}

getKEGGPathwayName <- function(kegg_id) {
  result <- try(KEGGREST::keggGet(kegg_id)[[1]]$NAME, silent = TRUE)
  if (class(result) == "try-error") {
    return(NA)
  } else {
    return(result)
  }
}

interactive_table_linear_susie <- function(fit, ora) {
  
  fit <- fit
  ora <- ora
  
  res <- gseasusie:::get_gene_set_summary(fit) %>%
    dplyr::left_join(ora)
  
  coef <- susieR::coef.susie(fit)
  coef <- as.data.frame(cbind(names(coef), coef))
  colnames(coef) <- c("pwy", "beta")
  rownames(coef) <- seq(1,nrow(coef),by=1)
  
  res_updated <- res %>%
    # Ensure 'beta' in 'res' is of type double
    mutate(beta = as.numeric(beta)) %>%
    left_join(coef %>%
                # Ensure 'beta' in 'coef' is of type double
                mutate(beta = as.numeric(beta)), 
              by = c("geneSet" = "pwy")) %>%
    # Combine the two 'beta' columns, choosing 'coef' values first
    mutate(beta = coalesce(beta.y, beta.x)) %>%
    # Explicitly use `select` from `dplyr`
    dplyr::select(-beta.y, -beta.x)
  
  res <- res_updated
  
  csdat <- gseasusie:::get_credible_set_summary(fit) %>%
    dplyr::left_join(ora) %>%
    dplyr::filter(in_cs, active_cs) %>%
    dplyr::select(geneSet, component, in_cs) %>%
    distinct()
  
  dt <- res %>% 
    dplyr::filter(overlap > 0) %>%
    dplyr::mutate(
      logOddsRatio = log(oddsRatio),
      nlog10pFishersExact = -log10(pFishersExact)
    ) %>%
    dplyr::left_join(csdat) %>%
    dplyr::arrange(dplyr::desc(nlog10pFishersExact)) %>%
    dplyr::mutate(
      fisherRank = dplyr::row_number(),
      in_cs = dplyr::if_else(is.na(in_cs), FALSE, in_cs)) %>%
    dplyr::select(geneSet, beta, pip, overlap, geneSetSize, logOddsRatio, nlog10pFishersExact, in_cs, component, fisherRank) %>%
    dplyr::mutate(dplyr::across(!where(is.numeric) , as.factor))
  
  
  if(grepl("GO",dt$geneSet[1])) {
      dt <- dt %>%
      dplyr::filter(!is.na(component)) %>% #### only show CS
      dplyr::mutate(goTermName = sapply(as.character(geneSet), getGOTermName)) %>% # extract Go term names
      dplyr::select(geneSet, goTermName, everything()) # re-order
  }else if (grepl("hsa",dt$geneSet[1])) {
      dt <- dt %>%
      dplyr::filter(!is.na(component)) %>% #### only show CS
      dplyr::mutate(KEGGPathwayName = sapply(as.character(geneSet), getKEGGPathwayName)) %>% # extract Go term names
      dplyr::select(geneSet, KEGGPathwayName, everything()) # re-order
  }
  
  # dt %>%
  #   dplyr::select(-c(in_cs)) %>%
  #   reactable::reactable(
  #     filterable=TRUE,
  #     minRows=1,
  #     columns = list(
  #       pip = reactable::colDef(format = reactable::colFormat(digits = 3)),
  #       logOddsRatio = reactable::colDef(style= function(value){color_sign(value)},
  #                                        format = reactable::colFormat(digits = 3)),
  #       beta = reactable::colDef(style= function(value){color_sign(value)},
  #                                format = reactable::colFormat(digits = 3)),
  #       nlog10pFishersExact = reactable::colDef(format = reactable::colFormat(digits = 3))
  #     ),
  #     rowStyle = function(index){
  #       if(dt$in_cs[index] == TRUE){
  #         list(background = "#e5f5e0")
  #       }
  #     },
  #     defaultSorted = list(nlog10pFishersExact='desc')
  #   )
  # 
  DT::datatable(dt,options = list(pageLength=10))
  
}

interactive_table_logistic_susie <- function(fit, ora) {
  
  fit <- fit
  ora <- ora
  
  res <- gseasusie:::get_gene_set_summary(fit) %>%
    dplyr::left_join(ora)
  
  csdat <- gseasusie:::get_credible_set_summary(fit) %>%
    dplyr::left_join(ora) %>%
    dplyr::filter(in_cs, active_cs) %>%
    dplyr::select(geneSet, component, in_cs) %>%
    distinct()
  
  dt <- res %>% 
    dplyr::filter(overlap > 0) %>%
    dplyr::mutate(
      logOddsRatio = log(oddsRatio),
      nlog10pFishersExact = -log10(pFishersExact)
    ) %>%
    dplyr::left_join(csdat) %>%
    dplyr::arrange(dplyr::desc(nlog10pFishersExact)) %>%
    dplyr::mutate(
      fisherRank = dplyr::row_number(),
      in_cs = dplyr::if_else(is.na(in_cs), FALSE, in_cs)) %>%
    dplyr::select(geneSet, beta, pip, overlap, geneSetSize, logOddsRatio, nlog10pFishersExact, in_cs, component, fisherRank) %>%
    dplyr::mutate(dplyr::across(!where(is.numeric) , as.factor))
  
  
  if(grepl("GO",dt$geneSet[1])) {
      dt <- dt %>%
      dplyr::filter(!is.na(component)) %>% #### only show CS
      dplyr::mutate(goTermName = sapply(as.character(geneSet), getGOTermName)) %>% # extract Go term names
      dplyr::select(geneSet, goTermName, everything()) # re-order
  }else if (grepl("hsa",dt$geneSet[1])) {
      dt <- dt %>%
      dplyr::filter(!is.na(component)) %>% #### only show CS
      dplyr::mutate(KEGGPathwayName = sapply(as.character(geneSet), getKEGGPathwayName)) %>% # extract Go term names
      dplyr::select(geneSet, KEGGPathwayName, everything()) # re-order
  }
  
  # dt %>%
  #   dplyr::select(-c(in_cs)) %>%
  #   reactable::reactable(
  #     filterable=TRUE,
  #     minRows=10,
  #     columns = list(
  #       pip = reactable::colDef(format = reactable::colFormat(digits = 3)),
  #       logOddsRatio = reactable::colDef(style= function(value){color_sign(value)},
  #                                        format = reactable::colFormat(digits = 3)),
  #       beta = reactable::colDef(style= function(value){color_sign(value)},
  #                                format = reactable::colFormat(digits = 3)),
  #       nlog10pFishersExact = reactable::colDef(format = reactable::colFormat(digits = 3))
  #     ),
  #     rowStyle = function(index){
  #       if(dt$in_cs[index] == TRUE){
  #         list(background = "#e5f5e0")
  #       }
  #     },
  #     defaultSorted = list(nlog10pFishersExact='desc')
  #   )
  DT::datatable(dt,options = list(pageLength=10))
}

aFib-ebi-a-GCST006414

Go Biological Process

Modelling z-scores using Susie

load("/project/xinhe/xsun/ctwas/4.multi_tissue_process/results/susie/aFib-ebi-a-GCST006414_gobp.rdata")
gseasusie::enrichment_volcano(linear.fit, linear.ora)

interactive_table_linear_susie(fit = linear.fit, ora = linear.ora)

Modelling binarized y using logistic Susie

gseasusie::enrichment_volcano(logistic.fit, logistic.ora)

interactive_table_logistic_susie(logistic.fit, logistic.ora)

Go Molecular Function

Modelling z-scores using Susie

load("/project/xinhe/xsun/ctwas/4.multi_tissue_process/results/susie/aFib-ebi-a-GCST006414_gomf.rdata")
gseasusie::enrichment_volcano(linear.fit, linear.ora)

interactive_table_linear_susie(fit = linear.fit, ora = linear.ora)

Modelling binarized y using logistic Susie

gseasusie::enrichment_volcano(logistic.fit, logistic.ora)

interactive_table_logistic_susie(logistic.fit, logistic.ora)

Go Cellular Component

Modelling z-scores using Susie

load("/project/xinhe/xsun/ctwas/4.multi_tissue_process/results/susie/aFib-ebi-a-GCST006414_gocc.rdata")

gseasusie::enrichment_volcano(linear.fit, linear.ora)

interactive_table_linear_susie(fit = linear.fit, ora = linear.ora)

Modelling binarized y using logistic Susie

gseasusie::enrichment_volcano(logistic.fit, logistic.ora)

interactive_table_logistic_susie(logistic.fit, logistic.ora)

KEGG

Modelling z-scores using Susie

load("/project/xinhe/xsun/ctwas/4.multi_tissue_process/results/susie/aFib-ebi-a-GCST006414_kegg.rdata")
gseasusie::enrichment_volcano(linear.fit, linear.ora)

interactive_table_linear_susie(fit = linear.fit, ora = linear.ora)

Modelling binarized y using logistic Susie

gseasusie::enrichment_volcano(logistic.fit, logistic.ora)

interactive_table_logistic_susie(logistic.fit, logistic.ora)

IBD-ebi-a-GCST004131

Go Biological Process

Modelling z-scores using Susie

load("/project/xinhe/xsun/ctwas/4.multi_tissue_process/results/susie/IBD-ebi-a-GCST004131_gobp.rdata")
gseasusie::enrichment_volcano(linear.fit, linear.ora)

interactive_table_linear_susie(fit = linear.fit, ora = linear.ora)

Modelling binarized y using logistic Susie

gseasusie::enrichment_volcano(logistic.fit, logistic.ora)

interactive_table_logistic_susie(logistic.fit, logistic.ora)

Go Molecular Function

Modelling z-scores using Susie

load("/project/xinhe/xsun/ctwas/4.multi_tissue_process/results/susie/IBD-ebi-a-GCST004131_gomf.rdata")
gseasusie::enrichment_volcano(linear.fit, linear.ora)

interactive_table_linear_susie(fit = linear.fit, ora = linear.ora)

Modelling binarized y using logistic Susie

gseasusie::enrichment_volcano(logistic.fit, logistic.ora)

interactive_table_logistic_susie(logistic.fit, logistic.ora)

Go Cellular Component

Modelling z-scores using Susie

load("/project/xinhe/xsun/ctwas/4.multi_tissue_process/results/susie/IBD-ebi-a-GCST004131_gocc.rdata")

gseasusie::enrichment_volcano(linear.fit, linear.ora)

interactive_table_linear_susie(fit = linear.fit, ora = linear.ora)

Modelling binarized y using logistic Susie

gseasusie::enrichment_volcano(logistic.fit, logistic.ora)

interactive_table_logistic_susie(logistic.fit, logistic.ora)

KEGG

Modelling z-scores using Susie

load("/project/xinhe/xsun/ctwas/4.multi_tissue_process/results/susie/IBD-ebi-a-GCST004131_kegg.rdata")
gseasusie::enrichment_volcano(linear.fit, linear.ora)

interactive_table_linear_susie(fit = linear.fit, ora = linear.ora)

Modelling binarized y using logistic Susie

gseasusie::enrichment_volcano(logistic.fit, logistic.ora)

interactive_table_logistic_susie(logistic.fit, logistic.ora)

LDL-ukb-d-30780_irnt

Go Biological Process

Modelling z-scores using Susie

load("/project/xinhe/xsun/ctwas/4.multi_tissue_process/results/susie/LDL-ukb-d-30780_irnt_gobp.rdata")
gseasusie::enrichment_volcano(linear.fit, linear.ora)

interactive_table_linear_susie(fit = linear.fit, ora = linear.ora)

Modelling binarized y using logistic Susie

gseasusie::enrichment_volcano(logistic.fit, logistic.ora)

interactive_table_logistic_susie(logistic.fit, logistic.ora)

Go Molecular Function

Modelling z-scores using Susie

load("/project/xinhe/xsun/ctwas/4.multi_tissue_process/results/susie/LDL-ukb-d-30780_irnt_gomf.rdata")
gseasusie::enrichment_volcano(linear.fit, linear.ora)

interactive_table_linear_susie(fit = linear.fit, ora = linear.ora)

Modelling binarized y using logistic Susie

gseasusie::enrichment_volcano(logistic.fit, logistic.ora)

interactive_table_logistic_susie(logistic.fit, logistic.ora)

Go Cellular Component

Modelling z-scores using Susie

load("/project/xinhe/xsun/ctwas/4.multi_tissue_process/results/susie/LDL-ukb-d-30780_irnt_gocc.rdata")

gseasusie::enrichment_volcano(linear.fit, linear.ora)

interactive_table_linear_susie(fit = linear.fit, ora = linear.ora)

Modelling binarized y using logistic Susie

gseasusie::enrichment_volcano(logistic.fit, logistic.ora)

interactive_table_logistic_susie(logistic.fit, logistic.ora)

KEGG

Modelling z-scores using Susie

load("/project/xinhe/xsun/ctwas/4.multi_tissue_process/results/susie/LDL-ukb-d-30780_irnt_kegg.rdata")
gseasusie::enrichment_volcano(linear.fit, linear.ora)

interactive_table_linear_susie(fit = linear.fit, ora = linear.ora)

Modelling binarized y using logistic Susie

gseasusie::enrichment_volcano(logistic.fit, logistic.ora)

interactive_table_logistic_susie(logistic.fit, logistic.ora)

SBP-ukb-a-360

Go Biological Process

Modelling z-scores using Susie

load("/project/xinhe/xsun/ctwas/4.multi_tissue_process/results/susie/SBP-ukb-a-360_gobp.rdata")
gseasusie::enrichment_volcano(linear.fit, linear.ora)

interactive_table_linear_susie(fit = linear.fit, ora = linear.ora)

Modelling binarized y using logistic Susie

gseasusie::enrichment_volcano(logistic.fit, logistic.ora)

interactive_table_logistic_susie(logistic.fit, logistic.ora)

Go Molecular Function

Modelling z-scores using Susie

load("/project/xinhe/xsun/ctwas/4.multi_tissue_process/results/susie/SBP-ukb-a-360_gomf.rdata")
gseasusie::enrichment_volcano(linear.fit, linear.ora)

interactive_table_linear_susie(fit = linear.fit, ora = linear.ora)

Modelling binarized y using logistic Susie

gseasusie::enrichment_volcano(logistic.fit, logistic.ora)

interactive_table_logistic_susie(logistic.fit, logistic.ora)

Go Cellular Component

Modelling z-scores using Susie

load("/project/xinhe/xsun/ctwas/4.multi_tissue_process/results/susie/SBP-ukb-a-360_gocc.rdata")

gseasusie::enrichment_volcano(linear.fit, linear.ora)

interactive_table_linear_susie(fit = linear.fit, ora = linear.ora)

Modelling binarized y using logistic Susie

gseasusie::enrichment_volcano(logistic.fit, logistic.ora)

interactive_table_logistic_susie(logistic.fit, logistic.ora)

KEGG

Modelling z-scores using Susie

load("/project/xinhe/xsun/ctwas/4.multi_tissue_process/results/susie/SBP-ukb-a-360_kegg.rdata")
gseasusie::enrichment_volcano(linear.fit, linear.ora)

interactive_table_linear_susie(fit = linear.fit, ora = linear.ora)

Modelling binarized y using logistic Susie

gseasusie::enrichment_volcano(logistic.fit, logistic.ora)

interactive_table_logistic_susie(logistic.fit, logistic.ora)

SCZ-ieu-b-5102

Go Biological Process

Modelling z-scores using Susie

load("/project/xinhe/xsun/ctwas/4.multi_tissue_process/results/susie/SCZ-ieu-b-5102_gobp.rdata")
gseasusie::enrichment_volcano(linear.fit, linear.ora)

interactive_table_linear_susie(fit = linear.fit, ora = linear.ora)

Modelling binarized y using logistic Susie

gseasusie::enrichment_volcano(logistic.fit, logistic.ora)

interactive_table_logistic_susie(logistic.fit, logistic.ora)

Go Molecular Function

Modelling z-scores using Susie

load("/project/xinhe/xsun/ctwas/4.multi_tissue_process/results/susie/SCZ-ieu-b-5102_gomf.rdata")
gseasusie::enrichment_volcano(linear.fit, linear.ora)

interactive_table_linear_susie(fit = linear.fit, ora = linear.ora)

Modelling binarized y using logistic Susie

gseasusie::enrichment_volcano(logistic.fit, logistic.ora)

interactive_table_logistic_susie(logistic.fit, logistic.ora)

Go Cellular Component

Modelling z-scores using Susie

load("/project/xinhe/xsun/ctwas/4.multi_tissue_process/results/susie/SCZ-ieu-b-5102_gocc.rdata")

gseasusie::enrichment_volcano(linear.fit, linear.ora)

interactive_table_linear_susie(fit = linear.fit, ora = linear.ora)

Modelling binarized y using logistic Susie

gseasusie::enrichment_volcano(logistic.fit, logistic.ora)

interactive_table_logistic_susie(logistic.fit, logistic.ora)

KEGG

Modelling z-scores using Susie

load("/project/xinhe/xsun/ctwas/4.multi_tissue_process/results/susie/SCZ-ieu-b-5102_kegg.rdata")
gseasusie::enrichment_volcano(linear.fit, linear.ora)

interactive_table_linear_susie(fit = linear.fit, ora = linear.ora)

Modelling binarized y using logistic Susie

gseasusie::enrichment_volcano(logistic.fit, logistic.ora)

interactive_table_logistic_susie(logistic.fit, logistic.ora)

WBC-ieu-b-30

Go Biological Process

Modelling z-scores using Susie

load("/project/xinhe/xsun/ctwas/4.multi_tissue_process/results/susie/WBC-ieu-b-30_gobp.rdata")
gseasusie::enrichment_volcano(linear.fit, linear.ora)

interactive_table_linear_susie(fit = linear.fit, ora = linear.ora)

Modelling binarized y using logistic Susie

gseasusie::enrichment_volcano(logistic.fit, logistic.ora)

interactive_table_logistic_susie(logistic.fit, logistic.ora)

Go Molecular Function

Modelling z-scores using Susie

load("/project/xinhe/xsun/ctwas/4.multi_tissue_process/results/susie/WBC-ieu-b-30_gomf.rdata")
gseasusie::enrichment_volcano(linear.fit, linear.ora)

interactive_table_linear_susie(fit = linear.fit, ora = linear.ora)

Modelling binarized y using logistic Susie

gseasusie::enrichment_volcano(logistic.fit, logistic.ora)

interactive_table_logistic_susie(logistic.fit, logistic.ora)

Go Cellular Component

Modelling z-scores using Susie

load("/project/xinhe/xsun/ctwas/4.multi_tissue_process/results/susie/WBC-ieu-b-30_gocc.rdata")

gseasusie::enrichment_volcano(linear.fit, linear.ora)

interactive_table_linear_susie(fit = linear.fit, ora = linear.ora)

Modelling binarized y using logistic Susie

gseasusie::enrichment_volcano(logistic.fit, logistic.ora)

interactive_table_logistic_susie(logistic.fit, logistic.ora)

KEGG

Modelling z-scores using Susie

load("/project/xinhe/xsun/ctwas/4.multi_tissue_process/results/susie/WBC-ieu-b-30_kegg.rdata")
gseasusie::enrichment_volcano(linear.fit, linear.ora)

interactive_table_linear_susie(fit = linear.fit, ora = linear.ora)

Modelling binarized y using logistic Susie

gseasusie::enrichment_volcano(logistic.fit, logistic.ora)

interactive_table_logistic_susie(logistic.fit, logistic.ora)

sessionInfo()
R version 4.2.0 (2022-04-22)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Red Hat Enterprise Linux 8.4 (Ootpa)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el8-x86_64/lib/libopenblas_skylakexp-r0.3.13.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] GO.db_3.16.0         AnnotationDbi_1.60.2 IRanges_2.32.0      
 [4] S4Vectors_0.36.2     Biobase_2.58.0       BiocGenerics_0.44.0 
 [7] lubridate_1.9.2      forcats_1.0.0        stringr_1.5.0       
[10] dplyr_1.1.2          purrr_1.0.1          readr_2.1.4         
[13] tidyr_1.3.0          tibble_3.2.1         ggplot2_3.4.2       
[16] tidyverse_2.0.0      gseasusie_0.0.0.9000

loaded via a namespace (and not attached):
 [1] bitops_1.0-7           matrixStats_1.2.0      fs_1.5.2              
 [4] bit64_4.0.5            httr_1.4.7             rprojroot_2.0.3       
 [7] GenomeInfoDb_1.34.9    data.tree_1.1.0        tools_4.2.0           
[10] bslib_0.3.1            DT_0.22                irlba_2.3.5           
[13] utf8_1.2.2             R6_2.5.1               DBI_1.1.2             
[16] colorspace_2.0-3       withr_2.5.0            tidyselect_1.2.0      
[19] curl_4.3.2             bit_4.0.4              compiler_4.2.0        
[22] git2r_0.30.1           VEB.Boost_0.0.0.9039   cli_3.6.2             
[25] labeling_0.4.2         sass_0.4.1             scales_1.2.0          
[28] mvtnorm_1.2-4          mixsqp_0.3-48          digest_0.6.29         
[31] spatstat.utils_3.0-1   rmarkdown_2.21         XVector_0.38.0        
[34] pkgconfig_2.0.3        htmltools_0.5.7        highr_0.9             
[37] fastmap_1.1.0          htmlwidgets_1.6.2      susieR_0.12.40        
[40] rlang_1.1.2            rstudioapi_0.14        RSQLite_2.3.1         
[43] jquerylib_0.1.4        generics_0.1.3         farver_2.1.0          
[46] jsonlite_1.8.7         crosstalk_1.2.0        mr.ash.alpha_0.1-43   
[49] RCurl_1.98-1.12        magrittr_2.0.3         GenomeInfoDbData_1.2.9
[52] Matrix_1.6-1.1         Rcpp_1.0.11            munsell_0.5.0         
[55] fansi_1.0.3            lifecycle_1.0.4        stringi_1.7.6         
[58] yaml_2.3.5             zlibbioc_1.44.0        plyr_1.8.7            
[61] grid_4.2.0             blob_1.2.3             parallel_4.2.0        
[64] promises_1.2.0.1       crayon_1.5.1           lattice_0.20-45       
[67] Biostrings_2.66.0      hms_1.1.3              KEGGREST_1.38.0       
[70] knitr_1.42             pillar_1.9.0           glue_1.6.2            
[73] evaluate_0.15          emulator_1.2-21        png_0.1-7             
[76] vctrs_0.6.1            tzdb_0.3.0             httpuv_1.6.5          
[79] gtable_0.3.0           reshape_0.8.9          cachem_1.0.6          
[82] xfun_0.38              later_1.3.0            memoise_2.0.1         
[85] workflowr_1.7.1        timechange_0.2.0       ellipsis_0.3.2