Last updated: 2024-09-24

Checks: 6 1

Knit directory: multigroup_ctwas_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20231112) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version d7cd32f. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    results/

Untracked files:
    Untracked:  analysis/LDL_predictdb_esQTL.Rmd
    Untracked:  analysis/multi_group_compare_predictdb_munro_4weights_8weights_update_thin1.Rmd
    Untracked:  analysis/multi_group_compare_predictdb_munro_updated_cs.Rmd
    Untracked:  analysis/multi_group_compare_predictdb_munro_updated_cs_thin1.Rmd

Unstaged changes:
    Modified:   analysis/index.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


We compare the results from Munro weights & predictdb weights here. We are figuring out how the number of high PIP genes compare with PredictDB results with the same tissues?

Settings

6 modalities from Munro

  1. Weight processing:

PredictDB:

all the PredictDB are converted from FUSION weights

  • drop_strand_ambig = TRUE,
  • scale_by_ld_variance = F (FUSION converted weights)
  • load_predictdb_LD = F,
  1. Parameter estimation and fine-mapping
  • niter_prefit = 5,
  • niter = 30(default),
  • L: determined by uniform susie,
  • group_prior_var_structure = “shared_type”,
  • maxSNP = 20000,
  • min_nonSNP_PIP = 0.5,

weights from predictdb

  1. Weight processing:

PredictDB (eqtl, sqtl)

  • drop_strand_ambig = TRUE,
  • scale_by_ld_variance = T
  • load_predictdb_LD = F,
  1. Parameter estimation and fine-mapping
  • niter_prefit = 5,
  • niter = 30(default),
  • L: determined by uniform susie,
  • group_prior_var_structure = “shared_type”,
  • maxSNP = 20000,
  • min_nonSNP_PIP = 0.5,

mem: 150g 5cores

Results

IBD – Colon_Transverse

Predictdb: eqtl and sqtl

2024-09-24 13:02:18 INFO::Annotating fine-mapping result ...
2024-09-24 13:02:18 INFO::Map molecular traits to genes
2024-09-24 13:02:18 INFO::Split PIPs for molecular traits mapped to multiple genes
2024-09-24 13:02:25 INFO::Add gene positions
2024-09-24 13:02:26 INFO::Add SNP positions
2024-09-24 13:02:36 INFO::Limit gene results to credible sets

Munro et al : 6 modalities

2024-09-24 13:02:55 INFO::Annotating fine-mapping result ...
2024-09-24 13:02:55 INFO::Map molecular traits to genes
2024-09-24 13:02:57 INFO::Add gene positions
2024-09-24 13:02:57 INFO::Add SNP positions
2024-09-24 13:03:06 INFO::Limit gene results to credible sets

Compare the results from Predictdb & Munro weights

If we filter by combined pip >0.8 in both settings, we have

There’s 1 overlapped genes at combined_pip > 0.8.

We noticed that, when using Munro’s weights, we have GNA12 as the top1 IBD risk gene, which has been reported by literature. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10323775/

But when using predictdb weights, we missed this gene.

[1] "Locus plot -- Predictdb"
2024-09-24 13:03:07 INFO::Limit to protein coding genes
2024-09-24 13:03:07 INFO::focal id: ENSG00000146535.13|Colon_Transverse_eQTL
2024-09-24 13:03:07 INFO::focal molecular trait: GNA12 Colon_Transverse eQTL
2024-09-24 13:03:07 INFO::Range of locus: chr7:2732556-4533638
2024-09-24 13:03:07 INFO::focal molecular trait QTL positions: 2760492,2820213
2024-09-24 13:03:07 INFO::Limit PIPs to credible sets

[1] "Locus plot -- Munro"
2024-09-24 13:03:09 INFO::Limit to protein coding genes
2024-09-24 13:03:09 INFO::focal id: ENSG00000146535|Colon_Transverse_eQTL
2024-09-24 13:03:09 INFO::focal molecular trait: GNA12 Colon_Transverse eQTL
2024-09-24 13:03:09 INFO::Range of locus: chr7:2732556-4533638
2024-09-24 13:03:09 INFO::focal molecular trait QTL positions: 2750246,2760492,3092158
2024-09-24 13:03:09 INFO::Limit PIPs to credible sets

We are trying to figure out why GNA12 was missed by predictdb weights.

In predictdb eQTL model, there are 2 SNPs,

              weight
rs208345   0.0925621
rs2533879 -0.1090777

In Munro eQTL model, there are 5 SNPs,

                weight
rs755179    0.01220240
rs798544   -0.04916490
rs798502   -0.06499180
rs208345    0.03188710
rs12540595 -0.00183916

We extracted the EUR LD R2 from 1000G using https://ldlink.nih.gov/?tab=ldmatrix

We noticed that, the 2 SNPs in predictdb weights are either in Munro weights (rs208345) or in LD with the Munro eQTLs (rs2533879).

rs755179 rs798544 rs798502 rs208345 rs12540595
rs208345 0.004 0.049 0.051 1.0 0.001
rs2533879 0.002 0.8 0.929 0.051 0.004

We also noticed that, 2 (rs798502,rs798544) of the 5 Munro eQTLs are in LD with each other

rs755179 rs798544 rs798502 rs208345 rs12540595
rs755179 1.0 0.003 0.003 0.004 0.0
rs798544 0.003 1.0 0.838 0.049 0.005
rs798502 0.003 0.838 1.0 0.051 0.005
rs208345 0.004 0.049 0.051 1.0 0.001
rs12540595 0.0 0.005 0.005 0.001 1.0

We checked the z scores for these SNPs,

                id A1 A2          z
4216443   rs755179  T  C  0.4172662
4217471   rs798544  C  T  4.7883212
4217631   rs798502  A  C  5.2463768
4217679   rs208345  A  G -2.0923913
4218004  rs2533879  G  A  4.7518248
4219465 rs12540595  G  A -1.7364341

The z-scores for GNA12 are:

predictdb: -4.461474

Munro: -6.736242

Checking why Predicdb results missed many Munro genes

[1] "# of Unique munro genes = 26"
[1] "# of Unique munro genes included in predictdb data = 19"

There are some genes have large abs(z) but low PIPs in predictdb setting (RTEL1, USP4), we make locus plots for these genes to understand why

RTEL1: this gene was assigned to region 20_63558827_64333810 in predictdb setting but 20_62670503_63558827 in Munro setting

[1] "Locus plot -- Predictdb"
2024-09-24 13:03:19 INFO::Limit to protein coding genes
2024-09-24 13:03:19 INFO::focal id: intron_20_63736712_63737533|Colon_Transverse_sQTL
2024-09-24 13:03:19 INFO::focal molecular trait: LIME1 Colon_Transverse sQTL
2024-09-24 13:03:19 INFO::Range of locus: chr20:63558727-64328976
2024-09-24 13:03:19 INFO::focal molecular trait QTL positions: 63737253
2024-09-24 13:03:19 INFO::Limit PIPs to credible sets

We noticed in the top panel, there is a gene with outstanding pvalue, but 2 SNPs have the largest PIPs (second panel). We try to understand this case, we run ctwas in this region with L=1

[1] "the pre-estimated L for this region is 2"
2024-09-24 13:03:22 INFO::Fine-mapping 1 regions ...
2024-09-24 13:03:24 INFO::Annotating fine-mapping result ...
2024-09-24 13:03:24 INFO::Map molecular traits to genes
2024-09-24 13:03:25 INFO::Split PIPs for molecular traits mapped to multiple genes
2024-09-24 13:03:25 INFO::Add gene positions
2024-09-24 13:03:25 INFO::Add SNP positions
2024-09-24 13:03:28 INFO::Limit to protein coding genes
2024-09-24 13:03:28 INFO::focal id: intron_20_63695854_63696760|Colon_Transverse_sQTL
2024-09-24 13:03:28 INFO::focal molecular trait: TNFRSF6B Colon_Transverse sQTL
2024-09-24 13:03:28 INFO::Range of locus: chr20:63558727-64328976
2024-09-24 13:03:28 INFO::focal molecular trait QTL positions: 63697746
2024-09-24 13:03:28 INFO::Limit PIPs to credible sets

[1] "Locus plot -- Munro"
2024-09-24 13:03:31 INFO::Limit to protein coding genes
2024-09-24 13:03:31 INFO::focal id: ENSG00000258366:ENST00000370003|Colon_Transverse_isoQTL
2024-09-24 13:03:31 INFO::focal molecular trait: RTEL1 Colon_Transverse isoQTL
2024-09-24 13:03:31 INFO::Range of locus: chr20:62664015-63677132
2024-09-24 13:03:31 INFO::focal molecular trait QTL positions: 63403750
2024-09-24 13:03:31 INFO::Limit PIPs to credible sets

If we merge the RTEL1 region

2024-09-24 13:03:35 INFO::Limit to protein coding genes
2024-09-24 13:03:35 INFO::focal id: ENSG00000197114:ENST00000478385|Colon_Transverse_isoQTL
2024-09-24 13:03:35 INFO::focal molecular trait: ZGPAT Colon_Transverse isoQTL
2024-09-24 13:03:35 INFO::Range of locus: chr20:62664015-64328976
2024-09-24 13:03:35 INFO::focal molecular trait QTL positions: 63730385
2024-09-24 13:03:35 INFO::Limit PIPs to credible sets

USP4: this gene was assigned to region 3_49279539_51797999 in predictdb setting but 3_47685722_49279539 in Munro setting

[1] "Locus plot -- Predictdb"
2024-09-24 13:03:38 INFO::Limit to protein coding genes
2024-09-24 13:03:38 INFO::focal id: intron_3_49125169_49125269|Colon_Transverse_sQTL
2024-09-24 13:03:38 INFO::focal molecular trait: LAMB2 Colon_Transverse sQTL
2024-09-24 13:03:38 INFO::Range of locus: chr3:47688075-49277627
2024-09-24 13:03:38 INFO::focal molecular trait QTL positions: 49124851
2024-09-24 13:03:38 INFO::Limit PIPs to credible sets

2024-09-24 13:03:40 INFO::Limit to protein coding genes
2024-09-24 13:03:40 INFO::focal id: intron_3_49676515_49676609|Colon_Transverse_sQTL
2024-09-24 13:03:40 INFO::focal molecular trait: APEH Colon_Transverse sQTL
2024-09-24 13:03:40 INFO::Range of locus: chr3:49279498-51794719
2024-09-24 13:03:40 INFO::focal molecular trait QTL positions: 49676792
2024-09-24 13:03:41 INFO::Limit PIPs to credible sets

[1] "Locus plot -- Munro"
2024-09-24 13:03:45 INFO::Limit to protein coding genes
2024-09-24 13:03:45 INFO::focal id: ENSG00000178467.grp_2.downstream.ENST00000609406|Colon_Transverse_apaQTL
2024-09-24 13:03:45 INFO::focal molecular trait: P4HTM Colon_Transverse apaQTL
2024-09-24 13:03:45 INFO::Range of locus: chr3:47255638-49426236
2024-09-24 13:03:45 INFO::focal molecular trait QTL positions: 49015786,49017259,49070995
2024-09-24 13:03:45 INFO::Limit PIPs to credible sets

2024-09-24 13:03:47 INFO::Limit to protein coding genes
2024-09-24 13:03:47 INFO::focal id: ENSG00000173531:chr3:49684189:49684314:clu_47947_-|Colon_Transverse_sQTL
2024-09-24 13:03:47 INFO::focal molecular trait: MST1 Colon_Transverse sQTL
2024-09-24 13:03:47 INFO::Range of locus: chr3:48998420-51794719
2024-09-24 13:03:47 INFO::focal molecular trait QTL positions: 49298312,49322510,49345492,49603616,49641218,49644878,49665051,49674864,49682296,49694428
2024-09-24 13:03:47 INFO::Limit PIPs to credible sets

If we merge the 2 regions above

2024-09-24 13:03:52 INFO::Limit to protein coding genes
2024-09-24 13:03:52 INFO::focal id: ENSG00000173531:chr3:49684189:49684314:clu_47947_-|splicing_Colon_Transverse
2024-09-24 13:03:52 INFO::focal molecular trait: MST1 Colon_Transverse sQTL
2024-09-24 13:03:52 INFO::Range of locus: chr3:47255638-51794719
2024-09-24 13:03:52 INFO::focal molecular trait QTL positions:
2024-09-24 13:03:52 INFO::Limit PIPs to credible sets

Comparing z-scores

library(dplyr)

gene_predictdb <- finemap_res_predictdb[finemap_res_predictdb$type !="SNP",]
gene_predictdb <- gene_predictdb[,c("gene_name","z","susie_pip")]

gene_predictdb_clean <- gene_predictdb %>%
  group_by(gene_name) %>%
  dplyr::filter(abs(z) == max(abs(z))) %>%
  ungroup()

gene_munro <- finemap_res_munro[finemap_res_munro$type !="SNP",]
gene_munro <- gene_munro[,c("gene_name","z","susie_pip")]

gene_munro_clean <- gene_munro %>%
  group_by(gene_name) %>%
  dplyr::filter(abs(z) == max(abs(z))) %>%
  ungroup()

merge_eqtl <- merge(gene_predictdb_clean, gene_munro_clean, by="gene_name")
colnames(merge_eqtl) <- c("gene_name","z_predictdb", "pip_predictdb","z_munro", "pip_munro")


ggplot(merge_eqtl, aes(x = z_predictdb, y = z_munro)) +
  geom_point() +  
  geom_abline(intercept = 0, slope = 1, color = "red", linetype = "dashed") +  # Add y=x line
  theme_minimal() +
  labs(
    x = "Z PredictDB",
    y = "Z Munro",
    title = "Scatter Plot of Z PredictDB vs Z Munro"
  ) +
   theme(
    plot.title = element_text(hjust = 0.5),
    axis.text = element_text(size = 12),
    axis.title = element_text(size = 14),
    legend.position = "none"  # Remove the legend
  )

print("we take the abs(z)")
[1] "we take the abs(z)"
merge_eqtl$z_predictdb <- abs(merge_eqtl$z_predictdb)
merge_eqtl$z_munro <- abs(merge_eqtl$z_munro)
ggplot(merge_eqtl, aes(x = z_predictdb, y = z_munro)) +
  geom_point() +  
  geom_abline(intercept = 0, slope = 1, color = "red", linetype = "dashed") +  # Add y=x line
  theme_minimal() +
  labs(
    x = "Z PredictDB",
    y = "Z Munro",
    title = "Scatter Plot of Z PredictDB vs Z Munro (abs z scores)"
  ) +
   theme(
    plot.title = element_text(hjust = 0.5),
    axis.text = element_text(size = 12),
    axis.title = element_text(size = 14),
    legend.position = "none"  # Remove the legend
  )

gene_predictdb <- finemap_res_predictdb[finemap_res_predictdb$type =="eQTL",]
gene_predictdb <- gene_predictdb[,c("gene_name","z","susie_pip")]
gene_munro <- finemap_res_munro[finemap_res_munro$type =="eQTL",]
gene_munro <- gene_munro[,c("gene_name","z","susie_pip")]

merge_eqtl <- merge(gene_predictdb, gene_munro, by="gene_name")
colnames(merge_eqtl) <- c("gene_name","z_predictdb", "pip_predictdb","z_munro", "pip_munro")

merge_eqtl <- data.frame(lapply(merge_eqtl, function(x) {
  if(is.numeric(x)) format(round(x, 4), nsmall = 4)
  else x
}))


merge_eqtl$label <- ifelse(merge_eqtl$gene_name %in% overlapped_gene_all$genename, merge_eqtl$gene_name, NA)

merge_eqtl$z_predictdb <- as.numeric(merge_eqtl$z_predictdb)
merge_eqtl$z_munro<- as.numeric(merge_eqtl$z_munro)
merge_eqtl$pip_predictdb <- as.numeric(merge_eqtl$pip_predictdb)
merge_eqtl$pip_munro<- as.numeric(merge_eqtl$pip_munro)

# Create the scatter plot with labels for specific genes
ggplot(merge_eqtl, aes(x = z_predictdb, y = z_munro)) +
  geom_point(aes(color = !is.na(label))) +  # Color based on whether label is NA
  geom_abline(intercept = 0, slope = 1, color = "red", linetype = "dashed") +  # Add y=x line
  theme_minimal() +
  labs(
    x = "Z PredictDB",
    y = "Z Munro",
    title = "Scatter Plot of Z PredictDB vs Z Munro"
  ) +
  geom_text(aes(label = label), vjust = 1.5, hjust = 1.5, size = 3, color = "red") +  # Label the points with red color
  scale_color_manual(values = c("black", "red")) +  # Set colors: black for non-labeled, red for labeled
  theme(
    plot.title = element_text(hjust = 0.5),
    axis.text = element_text(size = 12),
    axis.title = element_text(size = 14),
    legend.position = "none"  # Remove the legend
  )
Warning: Removed 553 rows containing missing values or values outside the scale range
(`geom_text()`).

ggplot(merge_eqtl, aes(x = pip_predictdb, y = pip_munro)) +
  geom_point(aes(color = !is.na(label))) +  # Color based on whether label is NA
  geom_abline(intercept = 0, slope = 1, color = "red", linetype = "dashed") +  # Add y=x line
  theme_minimal() +
  labs(
    x = "PIP PredictDB",
    y = "PIP Munro",
    title = "Scatter Plot of PIP PredictDB vs PIP Munro"
  ) +
  geom_text(aes(label = label), vjust = 1.5, hjust = 1.5, size = 3, color = "red") +  # Label the points with red color
  scale_color_manual(values = c("black", "red")) +  # Set colors: black for non-labeled, red for labeled
  theme(
    plot.title = element_text(hjust = 0.5),
    axis.text = element_text(size = 12),
    axis.title = element_text(size = 14),
    legend.position = "none"  # Remove the legend
  )
Warning: Removed 553 rows containing missing values or values outside the scale range
(`geom_text()`).

DT::datatable(merge_eqtl,caption = htmltools::tags$caption( style = 'caption-side: topleft; text-align = left; color:black;','Z-scores and PIPs computed from eQTL, for the overlapped genes'),options = list(pageLength = 5) )

If we don’t consider CS, I noticed there is a gene NXPE1. The z-predictdb = 4.5985 and z-munro = 4.4947. But pip_predictdb = 0.4679 and pip_munro = 0.0138.

In predictdb eQTL model, there are 1 SNPs,

             weight
rs661946 0.07486575

In Munro eQTL model, there are 3 SNPs,

               weight
rs238925  -0.00283751
rs561722   0.27416500
rs1850521 -0.02065090

We checked the z scores for these SNPs,

               id A1 A2         z
6612785  rs238925  G  T 1.8692308
6614255  rs561722  C  T 4.6439394
6614384  rs661946  C  T 4.5984848
6614420 rs1850521  G  T 0.3854749

The both predictdb eQTL and munro eQTLs have large GWAS z-score. We checked more about the finemapping results

The Munro PIPs are from sQTLs. So, as shown in the earlier scatter plot, the eQTL PIP is very low.


sessionInfo()
R version 4.2.0 (2022-04-22)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so

locale:
[1] C

attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] cowplot_1.1.1             ggrepel_0.9.1            
 [3] locuszoomr_0.2.1          logging_0.10-108         
 [5] EnsDb.Hsapiens.v86_2.99.0 ensembldb_2.20.2         
 [7] AnnotationFilter_1.20.0   GenomicFeatures_1.48.3   
 [9] AnnotationDbi_1.58.0      Biobase_2.56.0           
[11] GenomicRanges_1.48.0      GenomeInfoDb_1.39.9      
[13] IRanges_2.30.0            S4Vectors_0.34.0         
[15] BiocGenerics_0.42.0       gridExtra_2.3            
[17] forcats_0.5.1             stringr_1.5.1            
[19] dplyr_1.1.4               purrr_1.0.2              
[21] readr_2.1.2               tidyr_1.3.0              
[23] tibble_3.2.1              ggplot2_3.5.1            
[25] tidyverse_1.3.1           data.table_1.14.2        
[27] ctwas_0.4.14             

loaded via a namespace (and not attached):
  [1] readxl_1.4.0                backports_1.4.1            
  [3] workflowr_1.7.0             BiocFileCache_2.4.0        
  [5] lazyeval_0.2.2              BiocParallel_1.30.3        
  [7] crosstalk_1.2.0             LDlinkR_1.2.3              
  [9] digest_0.6.29               htmltools_0.5.2            
 [11] fansi_1.0.3                 magrittr_2.0.3             
 [13] memoise_2.0.1               tzdb_0.4.0                 
 [15] Biostrings_2.64.0           modelr_0.1.8               
 [17] matrixStats_0.62.0          prettyunits_1.1.1          
 [19] colorspace_2.0-3            blob_1.2.3                 
 [21] rvest_1.0.2                 rappdirs_0.3.3             
 [23] haven_2.5.0                 xfun_0.41                  
 [25] crayon_1.5.1                RCurl_1.98-1.7             
 [27] jsonlite_1.8.0              zoo_1.8-10                 
 [29] glue_1.6.2                  gtable_0.3.0               
 [31] zlibbioc_1.42.0             XVector_0.36.0             
 [33] DelayedArray_0.22.0         RcppZiggurat_0.1.6         
 [35] scales_1.3.0                DBI_1.2.2                  
 [37] Rcpp_1.0.12                 viridisLite_0.4.0          
 [39] progress_1.2.2              bit_4.0.4                  
 [41] DT_0.22                     htmlwidgets_1.5.4          
 [43] httr_1.4.3                  ellipsis_0.3.2             
 [45] pkgconfig_2.0.3             XML_3.99-0.14              
 [47] farver_2.1.0                sass_0.4.1                 
 [49] dbplyr_2.1.1                utf8_1.2.2                 
 [51] tidyselect_1.2.0            labeling_0.4.2             
 [53] rlang_1.1.2                 later_1.3.0                
 [55] munsell_0.5.0               pgenlibr_0.3.3             
 [57] cellranger_1.1.0            tools_4.2.0                
 [59] cachem_1.0.6                cli_3.6.1                  
 [61] generics_0.1.2              RSQLite_2.3.1              
 [63] broom_0.8.0                 evaluate_0.15              
 [65] fastmap_1.1.0               yaml_2.3.5                 
 [67] knitr_1.39                  bit64_4.0.5                
 [69] fs_1.5.2                    KEGGREST_1.36.3            
 [71] xml2_1.3.3                  biomaRt_2.54.1             
 [73] compiler_4.2.0              rstudioapi_0.13            
 [75] plotly_4.10.0               filelock_1.0.2             
 [77] curl_4.3.2                  png_0.1-7                  
 [79] reprex_2.0.1                bslib_0.3.1                
 [81] stringi_1.7.6               highr_0.9                  
 [83] lattice_0.20-45             ProtGenerics_1.28.0        
 [85] Matrix_1.5-3                vctrs_0.6.5                
 [87] pillar_1.9.0                lifecycle_1.0.4            
 [89] jquerylib_0.1.4             bitops_1.0-7               
 [91] irlba_2.3.5                 httpuv_1.6.5               
 [93] rtracklayer_1.56.0          R6_2.5.1                   
 [95] BiocIO_1.6.0                promises_1.2.0.1           
 [97] codetools_0.2-18            assertthat_0.2.1           
 [99] SummarizedExperiment_1.26.1 rprojroot_2.0.3            
[101] rjson_0.2.21                withr_2.5.0                
[103] GenomicAlignments_1.32.0    Rsamtools_2.12.0           
[105] GenomeInfoDbData_1.2.8      parallel_4.2.0             
[107] hms_1.1.1                   grid_4.2.0                 
[109] gggrid_0.2-0                rmarkdown_2.25             
[111] Rfast_2.0.7                 MatrixGenerics_1.8.0       
[113] git2r_0.30.1                mixsqp_0.3-43              
[115] lubridate_1.8.0             restfulr_0.0.14