Last updated: 2023-02-15

Checks: 5 2

Knit directory: cTWAS_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ data
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config_b38.R code/ctwas_config_b38.R
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/mqtl/WholeBlood.db data/mqtl/WholeBlood.db
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/G_list.RData data/G_list.RData
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/locus_plot.R code/locus_plot.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 1c8d70c. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .ipynb_checkpoints/

Untracked files:
    Untracked:  Proposal plots.R
    Untracked:  RGS14.pdf
    Untracked:  RNF186.pdf
    Untracked:  SCZ_annotation.xlsx
    Untracked:  SLC8B1.pdf
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  cache/
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/FUMA_output/
    Untracked:  data/GO_Terms/
    Untracked:  data/GTEx_Analysis_v8_eQTL.tar
    Untracked:  data/G_list.RData
    Untracked:  data/IBD_ME/
    Untracked:  data/LDL/
    Untracked:  data/LDL_E_S/
    Untracked:  data/LDL_M/
    Untracked:  data/LDL_S/
    Untracked:  data/PGC3_SCZ_wave3_public.v2.tsv
    Untracked:  data/SCZ/
    Untracked:  data/SCZ_2018/
    Untracked:  data/SCZ_2018_S/
    Untracked:  data/SCZ_2020/
    Untracked:  data/SCZ_S/
    Untracked:  data/Supplementary Table 15 - MAGMA.xlsx
    Untracked:  data/Supplementary Table 20 - Prioritised Genes.xlsx
    Untracked:  data/UKBB/
    Untracked:  data/UKBB_SNPs_Info.text
    Untracked:  data/WhiteBlood_E/
    Untracked:  data/WhiteBlood_E_M/
    Untracked:  data/WhiteBlood_E_S_M/
    Untracked:  data/WhiteBlood_M/
    Untracked:  data/cpg_annot.RData
    Untracked:  data/eqtl/
    Untracked:  data/gencode.v26.GRCh38.genes.gtf
    Untracked:  data/gene_OMIM.txt
    Untracked:  data/gene_pip_0.8.txt
    Untracked:  data/gwas_sumstats/
    Untracked:  data/magma.genes.out
    Untracked:  data/mashr_Heart_Atrial_Appendage.db
    Untracked:  data/mashr_sqtl/
    Untracked:  data/mqtl/
    Untracked:  data/notes.txt
    Untracked:  data/scz_2018.RDS
    Untracked:  data/summary_known_genes_annotations.xlsx
    Untracked:  submit.sh
    Untracked:  temp_LDR/

Unstaged changes:
    Deleted:    analysis/Atrial_Fibrillation_Heart_Atrial_Appendage.Rmd
    Deleted:    analysis/Atrial_Fibrillation_Heart_Left_Ventricle.Rmd
    Deleted:    analysis/Autism_Brain_Amygdala.Rmd
    Deleted:    analysis/Autism_Brain_Anterior_cingulate_cortex_BA24.Rmd
    Deleted:    analysis/Autism_Brain_Caudate_basal_ganglia.Rmd
    Deleted:    analysis/Autism_Brain_Cerebellar_Hemisphere.Rmd
    Deleted:    analysis/Autism_Brain_Cerebellum.Rmd
    Deleted:    analysis/Autism_Brain_Cortex.Rmd
    Deleted:    analysis/Autism_Brain_Frontal_Cortex_BA9.Rmd
    Deleted:    analysis/Autism_Brain_Hippocampus.Rmd
    Deleted:    analysis/Autism_Brain_Hypothalamus.Rmd
    Deleted:    analysis/Autism_Brain_Nucleus_accumbens_basal_ganglia.Rmd
    Deleted:    analysis/Autism_Brain_Putamen_basal_ganglia.Rmd
    Deleted:    analysis/Autism_Brain_Spinal_cord_cervical_c-1.Rmd
    Deleted:    analysis/Autism_Brain_Substantia_nigra.Rmd
    Deleted:    analysis/BMI_Brain_Amygdala.Rmd
    Deleted:    analysis/BMI_Brain_Amygdala_S.Rmd
    Deleted:    analysis/BMI_Brain_Anterior_cingulate_cortex_BA24.Rmd
    Deleted:    analysis/BMI_Brain_Anterior_cingulate_cortex_BA24_S.Rmd
    Deleted:    analysis/BMI_Brain_Caudate_basal_ganglia.Rmd
    Deleted:    analysis/BMI_Brain_Caudate_basal_ganglia_S.Rmd
    Deleted:    analysis/BMI_Brain_Cerebellar_Hemisphere.Rmd
    Deleted:    analysis/BMI_Brain_Cerebellar_Hemisphere_S.Rmd
    Deleted:    analysis/BMI_Brain_Cerebellum.Rmd
    Deleted:    analysis/BMI_Brain_Cerebellum_S.Rmd
    Deleted:    analysis/BMI_Brain_Cortex.Rmd
    Deleted:    analysis/BMI_Brain_Cortex_S.Rmd
    Deleted:    analysis/BMI_Brain_Frontal_Cortex_BA9.Rmd
    Deleted:    analysis/BMI_Brain_Frontal_Cortex_BA9_S.Rmd
    Deleted:    analysis/BMI_Brain_Hippocampus.Rmd
    Deleted:    analysis/BMI_Brain_Hippocampus_S.Rmd
    Deleted:    analysis/BMI_Brain_Hypothalamus.Rmd
    Deleted:    analysis/BMI_Brain_Hypothalamus_S.Rmd
    Deleted:    analysis/BMI_Brain_Nucleus_accumbens_basal_ganglia.Rmd
    Deleted:    analysis/BMI_Brain_Nucleus_accumbens_basal_ganglia_S.Rmd
    Deleted:    analysis/BMI_Brain_Putamen_basal_ganglia.Rmd
    Deleted:    analysis/BMI_Brain_Putamen_basal_ganglia_S.Rmd
    Deleted:    analysis/BMI_Brain_Spinal_cord_cervical_c-1.Rmd
    Deleted:    analysis/BMI_Brain_Spinal_cord_cervical_c-1_S.Rmd
    Deleted:    analysis/BMI_Brain_Substantia_nigra.Rmd
    Deleted:    analysis/BMI_Brain_Substantia_nigra_S.Rmd
    Deleted:    analysis/BMI_S_results.Rmd
    Deleted:    analysis/Glucose_Adipose_Subcutaneous.Rmd
    Deleted:    analysis/Glucose_Adipose_Visceral_Omentum.Rmd
    Modified:   analysis/WhiteBlood_WholeBlood_E.Rmd
    Modified:   analysis/WhiteBlood_WholeBlood_E_M.Rmd
    Modified:   analysis/WhiteBlood_WholeBlood_E_S_M.Rmd
    Modified:   analysis/WhiteBlood_WholeBlood_M.Rmd
    Deleted:    code/White_Blood_M_out/White_Blood_BreastMammary.err
    Deleted:    code/White_Blood_M_out/White_Blood_BreastMammary.out
    Deleted:    code/White_Blood_M_out/White_Blood_ColonTransverse.err
    Deleted:    code/White_Blood_M_out/White_Blood_ColonTransverse.out
    Deleted:    code/White_Blood_M_out/White_Blood_KidneyCortex.err
    Deleted:    code/White_Blood_M_out/White_Blood_KidneyCortex.out
    Deleted:    code/White_Blood_M_out/White_Blood_Lung.err
    Deleted:    code/White_Blood_M_out/White_Blood_Lung.out
    Deleted:    code/White_Blood_M_out/White_Blood_MuscleSkeletal.err
    Deleted:    code/White_Blood_M_out/White_Blood_MuscleSkeletal.out
    Deleted:    code/White_Blood_M_out/White_Blood_Ovary.err
    Deleted:    code/White_Blood_M_out/White_Blood_Ovary.out
    Deleted:    code/White_Blood_M_out/White_Blood_Prostate.err
    Deleted:    code/White_Blood_M_out/White_Blood_Prostate.out
    Deleted:    code/White_Blood_M_out/White_Blood_Testis.err
    Deleted:    code/White_Blood_M_out/White_Blood_Testis.out
    Deleted:    code/White_Blood_M_out/White_Blood_WholeBlood.err
    Deleted:    code/White_Blood_M_out/White_Blood_WholeBlood.out
    Deleted:    code/run_IBD_ctwas_rss_LDR_ME.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/WhiteBlood_WholeBlood_M.Rmd) and HTML (docs/WhiteBlood_WholeBlood_M.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 213f0e4 sq-96 2023-02-15 update
html 213f0e4 sq-96 2023-02-15 update
Rmd ada1828 sq-96 2023-02-12 update
html 5575f7f sq-96 2023-01-26 update
html 684d806 sq-96 2023-01-26 update
Rmd 363ce6a sq-96 2023-01-26 update

Weight QC

[1] 13069
[1] 11858

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
1206  901  655  485  593  787  624  536  368  631  707  583  336  351  390  545 
  17   18   19   20   21   22 
 707  160  529  312  179  273 
[1] 1

Load ctwas results

Check convergence of parameters

Version Author Date
684d806 sq-96 2023-01-26
#estimated group prior
estimated_group_prior <- estimated_group_prior_all[,ncol(group_prior_rec)]
print(estimated_group_prior)
      SNP      gene 
0.0002296 0.0136450 
#estimated group prior variance
estimated_group_prior_var <- estimated_group_prior_var_all[,ncol(group_prior_var_rec)]
print(estimated_group_prior_var)
  SNP  gene 
18.16 22.91 
#estimated enrichment
estimated_enrichment <- estimated_enrichment_all[ncol(group_prior_var_rec)]
print(estimated_enrichment)
[1] 59.42
#report sample size
print(sample_size)
[1] 350470
#report group size
print(group_size)
    SNP    gene 
8696600   11858 
#estimated group PVE
estimated_group_pve <- estimated_group_pve_all[,ncol(group_prior_rec)]
print(estimated_group_pve)
    SNP    gene 
0.10348 0.01058 
#total PVE
sum(estimated_group_pve)
[1] 0.1141
#attributable PVE
estimated_group_pve/sum(estimated_group_pve)
    SNP    gene 
0.90726 0.09274 

Genes with highest PIPs

#distribution of PIPs
hist(ctwas_gene_res$susie_pip, xlim=c(0,1), main="Distribution of Gene PIPs")

Version Author Date
684d806 sq-96 2023-01-26
#genes with PIP>0.8 or 20 highest PIPs
head(ctwas_gene_res[order(-ctwas_gene_res$susie_pip),report_cols], max(sum(ctwas_gene_res$susie_pip>0.8), 20))
           genename region_tag susie_pip    mu2       PVE       z num_eqtl
11419          <NA>       6_24    0.9871 163.38 4.602e-04  -1.928        1
11586        ACVRL1      12_32    0.9860  54.44 1.532e-04  -7.281        1
11669         NLRC5      16_30    0.9791  45.92 1.283e-04  -6.699        1
11679         MYO1C       17_2    0.9771  44.76 1.248e-04   6.588        1
11654         ITGAL      16_24    0.9681 152.53 4.213e-04  12.478        1
11858          <NA>      21_18    0.9601  62.06 1.700e-04  -7.930        1
11355    AC034220.3       5_79    0.9584 131.36 3.592e-04 -13.657        1
11521 RP11-351M16.3      10_20    0.9545 125.03 3.405e-04 -11.496        1
11788   CTC-503J8.4       19_6    0.9470  23.06 6.230e-05  -4.440        1
11323  CTD-2330K9.3       3_35    0.9463  67.85 1.832e-04  -8.414        1
11470          <NA>       6_34    0.9461  24.08 6.500e-05  -4.669        1
11534           CD6      11_34    0.9456  25.48 6.875e-05  -4.279        1
11831          <NA>      20_38    0.9364  26.24 7.012e-05   3.735        1
11555    AP000908.1      11_67    0.9357  77.08 2.058e-04  -8.003        1
11332          <NA>       4_40    0.9142  34.54 9.008e-05  -7.206        1
11272        LAPTM5       1_20    0.9132  38.28 9.975e-05   6.601        1
11507          <NA>       8_83    0.9092  29.76 7.722e-05   5.231        1
11326          <NA>        4_8    0.9029  25.77 6.638e-05   4.861        1
11318         EOMES       3_20    0.8851  60.43 1.526e-04   7.702        1
11505 RP11-136O12.2       8_83    0.8820  35.71 8.986e-05   5.719        1
11338          <NA>       5_35    0.8709  40.59 1.009e-04  -5.997        1
11502         CCT6A       7_40    0.8686  49.07 1.216e-04  -5.881        1
11703          <NA>      17_23    0.8549  65.49 1.597e-04  12.877        1
11701         PSMD3      17_23    0.8543 612.47 1.493e-03 -37.218        1
11794          LSM4      19_15    0.8142  24.47 5.684e-05   3.864        1

GO enrichment analysis for genes with PIP>0.8

#number of genes for gene set enrichment
length(genes)
[1] 25

DisGeNET enrichment analysis for genes with PIP>0.5

Warning in disease_enrichment(entities = genes, vocabulary = "HGNC", database =
"CURATED"): Removing duplicates from input list.
                                                                     Description
10                                                                     Epistaxis
19                                                                Telangiectasis
20                                              Pulmonary Arteriovenous Fistulas
22                               Congenital pulmonary arteriovenous malformation
26                                           Arteriovenous malformation of liver
34 HEREDITARY HEMORRHAGIC TELANGIECTASIA-RELATED PULMONARY ARTERIAL HYPERTENSION
35                                                  OSLER-RENDU-WEBER SYNDROME 2
37                                          Pulmonary arteriovenous malformation
16                                                 Liver Cirrhosis, Experimental
25                                         Sensorineural hearing loss, bilateral
        FDR Ratio  BgRatio
10 0.004947   1/8   1/9703
19 0.004947   1/8   1/9703
20 0.004947   1/8   1/9703
22 0.004947   1/8   1/9703
26 0.004947   1/8   1/9703
34 0.004947   1/8   1/9703
35 0.004947   1/8   1/9703
37 0.004947   1/8   1/9703
16 0.007416   4/8 774/9703
25 0.007416   1/8   3/9703

WebGestalt enrichment analysis for genes with PIP>0.5

Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL
Loading required package: S4Vectors
Loading required package: stats4
Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'
The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':

    anyDuplicated, append, as.data.frame, basename, cbind, colnames,
    dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
    grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
    order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
    rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
    union, unique, unsplit, which.max, which.min

Attaching package: 'S4Vectors'
The following objects are masked from 'package:base':

    expand.grid, I, unname
Loading required package: IRanges
Loading required package: GenomicRanges
Loading required package: GenomeInfoDb
Loading required package: grid
a <- locus_plot(region_tag="17_34", return_table=T,
                      focus=NULL,
                      label_genes=NULL,
                      rerun_ctwas=F,
                      rerun_load_only=F,
                      label_panel="both",
                      legend_side="left",
                      legend_panel="")

Version Author Date
213f0e4 sq-96 2023-02-15
a <- locus_plot(region_tag="19_32", return_table=T,
                      focus=NULL,
                      label_genes=NULL,
                      rerun_ctwas=F,
                      rerun_load_only=F,
                      label_panel="both",
                      legend_side="left",
                      legend_panel="")

Version Author Date
213f0e4 sq-96 2023-02-15
684d806 sq-96 2023-01-26
a <- locus_plot(region_tag="12_1", return_table=T,
                      focus=NULL,
                      label_genes=NULL,
                      rerun_ctwas=F,
                      rerun_load_only=F,
                      label_panel="both",
                      legend_side="left",
                      legend_panel="")

Version Author Date
213f0e4 sq-96 2023-02-15
a <- locus_plot(region_tag="1_20", return_table=T,
                      focus=NULL,
                      label_genes=NULL,
                      rerun_ctwas=F,
                      rerun_load_only=F,
                      label_panel="both",
                      legend_side="left",
                      legend_panel="")

Version Author Date
213f0e4 sq-96 2023-02-15

sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] grid      stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] Gviz_1.38.4          GenomicRanges_1.46.1 GenomeInfoDb_1.30.1 
 [4] IRanges_2.28.0       S4Vectors_0.32.4     BiocGenerics_0.40.0 
 [7] WebGestaltR_0.4.4    disgenet2r_0.99.2    enrichR_3.1         
[10] cowplot_1.1.1        ggplot2_3.4.0        workflowr_1.7.0     

loaded via a namespace (and not attached):
  [1] backports_1.2.1             Hmisc_4.7-2                
  [3] BiocFileCache_2.2.1         systemfonts_1.0.4          
  [5] plyr_1.8.8                  igraph_1.3.5               
  [7] lazyeval_0.2.2              splines_4.1.0              
  [9] BiocParallel_1.28.3         digest_0.6.31              
 [11] ensembldb_2.18.4            foreach_1.5.2              
 [13] htmltools_0.5.4             fansi_1.0.3                
 [15] checkmate_2.1.0             magrittr_2.0.3             
 [17] memoise_2.0.1               BSgenome_1.62.0            
 [19] cluster_2.1.2               doParallel_1.0.17          
 [21] tzdb_0.3.0                  Biostrings_2.62.0          
 [23] readr_2.1.3                 matrixStats_0.63.0         
 [25] vroom_1.6.0                 svglite_2.1.0              
 [27] prettyunits_1.1.1           jpeg_0.1-10                
 [29] colorspace_2.0-3            blob_1.2.3                 
 [31] rappdirs_0.3.3              xfun_0.35                  
 [33] dplyr_1.0.10                callr_3.7.3                
 [35] crayon_1.5.2                RCurl_1.98-1.9             
 [37] jsonlite_1.8.4              VariantAnnotation_1.40.0   
 [39] survival_3.2-11             iterators_1.0.14           
 [41] glue_1.6.2                  gtable_0.3.1               
 [43] zlibbioc_1.40.0             XVector_0.34.0             
 [45] DelayedArray_0.20.0         apcluster_1.4.10           
 [47] scales_1.2.1                DBI_1.1.3                  
 [49] rngtools_1.5.2              Rcpp_1.0.9                 
 [51] htmlTable_2.4.1             progress_1.2.2             
 [53] foreign_0.8-81              bit_4.0.5                  
 [55] Formula_1.2-4               htmlwidgets_1.6.0          
 [57] httr_1.4.4                  RColorBrewer_1.1-3         
 [59] ellipsis_0.3.2              pkgconfig_2.0.3            
 [61] XML_3.99-0.13               farver_2.1.0               
 [63] nnet_7.3-16                 sass_0.4.4                 
 [65] dbplyr_2.2.1                deldir_1.0-6               
 [67] utf8_1.2.2                  tidyselect_1.2.0           
 [69] labeling_0.4.2              rlang_1.0.6                
 [71] reshape2_1.4.4              later_1.3.0                
 [73] AnnotationDbi_1.56.2        munsell_0.5.0              
 [75] tools_4.1.0                 cachem_1.0.6               
 [77] cli_3.4.1                   generics_0.1.3             
 [79] RSQLite_2.2.19              evaluate_0.19              
 [81] stringr_1.5.0               fastmap_1.1.0              
 [83] yaml_2.3.6                  processx_3.8.0             
 [85] knitr_1.41                  bit64_4.0.5                
 [87] fs_1.5.2                    AnnotationFilter_1.18.0    
 [89] KEGGREST_1.34.0             doRNG_1.8.2                
 [91] whisker_0.4.1               xml2_1.3.3                 
 [93] biomaRt_2.50.3              compiler_4.1.0             
 [95] rstudioapi_0.14             filelock_1.0.2             
 [97] curl_4.3.2                  png_0.1-8                  
 [99] tibble_3.1.8                bslib_0.4.1                
[101] stringi_1.7.8               highr_0.9                  
[103] ps_1.7.2                    GenomicFeatures_1.46.5     
[105] lattice_0.20-44             ProtGenerics_1.26.0        
[107] Matrix_1.3-3                vctrs_0.5.1                
[109] pillar_1.8.1                lifecycle_1.0.3            
[111] jquerylib_0.1.4             data.table_1.14.6          
[113] bitops_1.0-7                httpuv_1.6.7               
[115] rtracklayer_1.54.0          R6_2.5.1                   
[117] BiocIO_1.4.0                latticeExtra_0.6-30        
[119] promises_1.2.0.1            gridExtra_2.3              
[121] codetools_0.2-18            dichromat_2.0-0.1          
[123] assertthat_0.2.1            SummarizedExperiment_1.24.0
[125] rprojroot_2.0.3             rjson_0.2.21               
[127] withr_2.5.0                 GenomicAlignments_1.30.0   
[129] Rsamtools_2.10.0            GenomeInfoDbData_1.2.7     
[131] parallel_4.1.0              hms_1.1.2                  
[133] rpart_4.1-15                rmarkdown_2.19             
[135] MatrixGenerics_1.6.0        git2r_0.30.1               
[137] biovizBase_1.42.0           getPass_0.2-2              
[139] Biobase_2.54.0              base64enc_0.1-3            
[141] interp_1.1-3                restfulr_0.0.15