Last updated: 2022-03-16

Checks: 5 2

Knit directory: cTWAS_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ data
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R code/ctwas_config.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version d57314b. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .ipynb_checkpoints/
    Ignored:    data/AF/

Untracked files:
    Untracked:  Rplot.png
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  analysis/SCZ_2020_Brain_Amygdala.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Anterior_cingulate_cortex_BA24.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Caudate_basal_ganglia.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Cerebellar_Hemisphere.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Cerebellum.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Hippocampus.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Nucleus_accumbens_basal_ganglia.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Spinal_cord_cervical_c-1.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Substantia_nigra.Rmd
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/AF_out/
    Untracked:  code/Autism_out/
    Untracked:  code/BMI_S_out/
    Untracked:  code/BMI_out/
    Untracked:  code/Glucose_out/
    Untracked:  code/LDL_S_out/
    Untracked:  code/SCZ_2014_EUR_out/
    Untracked:  code/SCZ_2020_out/
    Untracked:  code/SCZ_S_out/
    Untracked:  code/SCZ_out/
    Untracked:  code/T2D_out/
    Untracked:  code/ctwas_config.R
    Untracked:  code/mapping.R
    Untracked:  code/out/
    Untracked:  code/run_AF_analysis.sbatch
    Untracked:  code/run_AF_analysis.sh
    Untracked:  code/run_AF_ctwas_rss_LDR.R
    Untracked:  code/run_Autism_analysis.sbatch
    Untracked:  code/run_Autism_analysis.sh
    Untracked:  code/run_Autism_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_analysis.sbatch
    Untracked:  code/run_BMI_analysis.sh
    Untracked:  code/run_BMI_analysis_S.sbatch
    Untracked:  code/run_BMI_analysis_S.sh
    Untracked:  code/run_BMI_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_ctwas_rss_LDR_S.R
    Untracked:  code/run_Glucose_analysis.sbatch
    Untracked:  code/run_Glucose_analysis.sh
    Untracked:  code/run_Glucose_ctwas_rss_LDR.R
    Untracked:  code/run_LDL_analysis_S.sbatch
    Untracked:  code/run_LDL_analysis_S.sh
    Untracked:  code/run_LDL_ctwas_rss_LDR_S.R
    Untracked:  code/run_SCZ_2014_EUR_analysis.sbatch
    Untracked:  code/run_SCZ_2014_EUR_analysis.sh
    Untracked:  code/run_SCZ_2014_EUR_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2020_analysis.sbatch
    Untracked:  code/run_SCZ_2020_analysis.sh
    Untracked:  code/run_SCZ_2020_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_analysis.sbatch
    Untracked:  code/run_SCZ_analysis.sh
    Untracked:  code/run_SCZ_analysis_S.sbatch
    Untracked:  code/run_SCZ_analysis_S.sh
    Untracked:  code/run_SCZ_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_ctwas_rss_LDR_S.R
    Untracked:  code/run_T2D_analysis.sbatch
    Untracked:  code/run_T2D_analysis.sh
    Untracked:  code/run_T2D_ctwas_rss_LDR.R
    Untracked:  code/wflow_build.R
    Untracked:  code/wflow_build.sbatch
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/BMI/
    Untracked:  data/PGC3_SCZ_wave3_public.v2.tsv
    Untracked:  data/SCZ/
    Untracked:  data/SCZ_2014_EUR/
    Untracked:  data/SCZ_2020/
    Untracked:  data/SCZ_S/
    Untracked:  data/T2D/
    Untracked:  data/UKBB/
    Untracked:  data/UKBB_SNPs_Info.text
    Untracked:  data/gene_OMIM.txt
    Untracked:  data/gene_pip_0.8.txt
    Untracked:  data/mashr_Heart_Atrial_Appendage.db
    Untracked:  data/mashr_sqtl/
    Untracked:  data/summary_known_genes_annotations.xlsx
    Untracked:  data/untitled.txt

Unstaged changes:
    Modified:   analysis/SCZ_2020_Brain_Cortex.Rmd
    Modified:   analysis/SCZ_2020_Brain_Frontal_Cortex_BA9.Rmd
    Modified:   analysis/SCZ_2020_Brain_Hypothalamus.Rmd
    Modified:   analysis/SCZ_2020_Brain_Putamen_basal_ganglia.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


Weight QC

#number of imputed weights
nrow(qclist_all)
[1] 10527
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
1031  738  609  413  507  592  509  397  395  409  612  610  227  352  364  465 
  17   18   19   20   21   22 
 630  170  797  315  124  261 
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 8543
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.8115

Check convergence of parameters

#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
     gene       snp 
0.0127710 0.0002755 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
 gene   snp 
15.89 12.53 
#report sample size
print(sample_size)
[1] 161405
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]   10527 7394310
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
   gene     snp 
0.01323 0.15811 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.04603 0.79565

Genes with highest PIPs

         genename region_tag susie_pip    mu2       PVE      z num_eqtl
10447      ZNF823      19_10    0.9822  40.58 2.470e-04  6.311        1
11504  AC012074.2       2_15    0.9658  29.78 1.782e-04  5.338        2
245         VSIG2      11_77    0.8994  49.79 2.774e-04 -7.361        1
2173         TLE4       9_38    0.8939  26.92 1.491e-04  5.000        1
865        KLHL20       1_85    0.8894  39.68 2.186e-04 -5.800        1
6680          ACE      17_37    0.8677  34.44 1.852e-04 -5.876        1
5097     C12orf10      12_33    0.8633  24.37 1.303e-04 -4.963        1
8557      MAP3K11      11_36    0.8430  33.25 1.737e-04 -5.570        1
7444       GTF2A1      14_39    0.8366  24.69 1.280e-04 -4.850        1
5485         RIT1       1_76    0.8259  24.31 1.244e-04 -4.023        1
5204        CPNE2      16_30    0.8172  21.49 1.088e-04 -4.125        1
3348        PTK2B       8_27    0.8007  23.35 1.159e-04  3.846        1
11457   HIST1H2BN       6_21    0.7935 181.54 8.924e-04 13.182        1
4275         ACY3      11_37    0.7916  19.99 9.804e-05 -3.260        1
2760       PDCD10      3_103    0.7716  23.17 1.107e-04 -4.520        1
12120       CEP95      17_37    0.7631  20.72 9.798e-05 -3.800        1
9567     NIPSNAP1      22_10    0.7619  23.26 1.098e-04 -4.302        2
12740 RP11-47A8.5      10_66    0.7617  37.04 1.748e-04  4.359        1
10453       RPL12       9_66    0.7558  24.49 1.147e-04  4.655        2
3842       ZNF835      19_38    0.7451  27.55 1.272e-04  5.136        1

Genes with largest effect sizes

       genename region_tag susie_pip    mu2       PVE       z num_eqtl
122    CACNA2D2       3_35 7.123e-01 355.58 1.569e-03 -0.1392        1
2799      HEMK1       3_35 3.002e-04 304.00 5.653e-07  0.4441        1
2800       CISH       3_35 6.345e-05 249.47 9.806e-08 -0.1383        1
11457 HIST1H2BN       6_21 7.935e-01 181.54 8.924e-04 13.1822        1
7229     TEX264       3_35 6.042e-05 136.41 5.106e-08  0.3106        1
38         RBM6       3_35 5.610e-01 120.33 4.182e-04  4.4688        1
5732    PPP1R18       6_24 3.105e-02 116.21 2.236e-05 10.6084        1
7227      MST1R       3_35 4.412e-03 114.51 3.130e-06 -4.0250        1
10032   SLC38A3       3_35 1.933e-02 111.49 1.335e-05 -2.7756        1
9594   HIST1H1B       6_21 2.010e-02 110.54 1.376e-05 -9.5356        1
4928       ARL3      10_66 1.802e-02  85.22 9.514e-06  9.6347        1
9231  HIST1H2BC       6_20 1.399e-02  83.97 7.278e-06 -7.9928        1
10755   ABHD16A       6_26 4.696e-01  83.92 2.442e-04 10.7104        1
10760      APOM       6_26 2.793e-01  82.50 1.428e-04 10.6484        1
4810      PGBD1       6_22 6.233e-02  79.79 3.081e-05 -7.9952        2
12858 HIST1H2BO       6_21 1.080e-02  79.14 5.294e-06 -8.0633        1
11740       C4A       6_26 4.950e-02  78.93 2.421e-05 10.4180        1
10718   HLA-DMA       6_27 5.976e-01  78.21 2.896e-04 -9.4080        1
7223     RNF123       3_35 7.831e-05  77.43 3.757e-08 -2.3622        1
9836     BTN3A2       6_20 1.692e-01  69.76 7.312e-05  6.9759        1

Genes with highest PVE

         genename region_tag susie_pip    mu2       PVE       z num_eqtl
122      CACNA2D2       3_35    0.7123 355.58 0.0015693 -0.1392        1
11457   HIST1H2BN       6_21    0.7935 181.54 0.0008924 13.1822        1
38           RBM6       3_35    0.5610 120.33 0.0004182  4.4688        1
10718     HLA-DMA       6_27    0.5976  78.21 0.0002896 -9.4080        1
7191        PBRM1       3_36    0.6688  67.43 0.0002794  9.4285        1
245         VSIG2      11_77    0.8994  49.79 0.0002774 -7.3608        1
10447      ZNF823      19_10    0.9822  40.58 0.0002470  6.3109        1
10755     ABHD16A       6_26    0.4696  83.92 0.0002442 10.7104        1
2890        SF3B1      2_117    0.7085  53.19 0.0002335  7.6053        1
865        KLHL20       1_85    0.8894  39.68 0.0002186 -5.7996        1
9217       HARBI1      11_28    0.5005  60.02 0.0001861  8.0462        1
6680          ACE      17_37    0.8677  34.44 0.0001852 -5.8759        1
11504  AC012074.2       2_15    0.9658  29.78 0.0001782  5.3381        2
12740 RP11-47A8.5      10_66    0.7617  37.04 0.0001748  4.3592        1
8557      MAP3K11      11_36    0.8430  33.25 0.0001737 -5.5697        1
7697        PDIA3      15_16    0.6457  38.37 0.0001535  6.3137        1
2173         TLE4       9_38    0.8939  26.92 0.0001491  4.9996        1
9176        PUF60       8_94    0.6967  34.26 0.0001479 -5.7929        1
10760        APOM       6_26    0.2793  82.50 0.0001428 10.6484        1
3313        SNX19      11_81    0.6239  36.33 0.0001404  5.7884        2

Genes with largest z scores

       genename region_tag susie_pip    mu2       PVE      z num_eqtl
11457 HIST1H2BN       6_21 0.7934544 181.54 8.924e-04 13.182        1
10755   ABHD16A       6_26 0.4695729  83.92 2.442e-04 10.710        1
10760      APOM       6_26 0.2792986  82.50 1.428e-04 10.648        1
5732    PPP1R18       6_24 0.0310507 116.21 2.236e-05 10.608        1
11740       C4A       6_26 0.0495023  78.93 2.421e-05 10.418        1
4928       ARL3      10_66 0.0180206  85.22 9.514e-06  9.635        1
9594   HIST1H1B       6_21 0.0200951 110.54 1.376e-05 -9.536        1
7191      PBRM1       3_36 0.6687926  67.43 2.794e-04  9.429        1
10718   HLA-DMA       6_27 0.5975593  78.21 2.896e-04 -9.408        1
10732     PRRT1       6_26 0.0120671  59.41 4.442e-06 -9.276        1
10729      RNF5       6_26 0.0149009  61.34 5.663e-06  9.132        2
7190       GNL3       3_36 0.1445801  64.38 5.767e-05  9.065        2
6037      ABCB9      12_75 0.0008065  64.68 3.232e-07  8.638        1
9354    ARL6IP4      12_75 0.0007298  64.25 2.905e-07 -8.615        1
2511     OGFOD2      12_75 0.0006966  64.13 2.768e-07  8.602        1
7893      SMIM4       3_36 0.0178696  57.81 6.400e-06 -8.494        1
440    MPHOSPH9      12_75 0.0004506  60.76 1.696e-07  8.479        2
7004       TYW5      2_118 0.3605961  48.60 1.086e-04 -8.344        1
7005      MAIP1      2_118 0.3605961  48.60 1.086e-04  8.344        1
12858 HIST1H2BO       6_21 0.0107971  79.14 5.294e-06 -8.063        1

Comparing z scores and PIPs

[1] 0.01596

GO enrichment analysis for genes with PIP>0.5

#number of genes for gene set enrichment
length(genes)
[1] 66
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Cellular_Component_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)

DisGeNET enrichment analysis for genes with PIP>0.5

                        Description     FDR Ratio  BgRatio
164    Follicular thyroid carcinoma 0.02733  2/28   5/9703
162                Thymic Carcinoma 0.02859  2/28   7/9703
5   Alcoholic Intoxication, Chronic 0.03184  5/28 268/9703
63      Infant, Premature, Diseases 0.03184  1/28   1/9703
93                  Noonan Syndrome 0.03184  2/28  24/9703
98                 Pneumonia, Viral 0.03184  1/28   1/9703
113               Splenic Neoplasms 0.03184  1/28   1/9703
144    Malignant neoplasm of spleen 0.03184  1/28   1/9703
150                LEOPARD Syndrome 0.03184  2/28  22/9703
194               Woolly hair nevus 0.03184  1/28   1/9703

WebGestalt enrichment analysis for genes with PIP>0.5

Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL

PIP Manhattan Plot

Warning: 'timedatectl' indicates the non-existent timezone name 'n/a'
Warning: Your system is mis-configured: '/etc/localtime' is not a symlink
Warning: It is strongly recommended to set envionment variable TZ to 'America/
Chicago' (or equivalent)
Warning: ggrepel: 22 unlabeled data points (too many overlaps). Consider
increasing max.overlaps

Sensitivity, specificity and precision for silver standard genes

#number of genes in known annotations
print(length(known_annotations))
[1] 130
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 58
#significance threshold for TWAS
print(sig_thresh)
[1] 4.576
#number of ctwas genes
length(ctwas_genes)
[1] 12
#number of TWAS genes
length(twas_genes)
[1] 168
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
     genename region_tag susie_pip   mu2       PVE      z num_eqtl
5485     RIT1       1_76    0.8259 24.31 0.0001244 -4.023        1
3348    PTK2B       8_27    0.8007 23.35 0.0001159  3.846        1
5204    CPNE2      16_30    0.8172 21.49 0.0001088 -4.125        1
#sensitivity / recall
print(sensitivity)
  ctwas    TWAS 
0.01538 0.16154 
#specificity
print(specificity)
ctwas  TWAS 
0.999 0.986 
#precision / PPV
print(precision)
 ctwas   TWAS 
0.1667 0.1250 

cTWAS is more precise than TWAS in distinguishing silver standard and bystander genes

#number of genes in known annotations (with imputed expression)
print(length(known_annotations))
[1] 58
#number of bystander genes (with imputed expression)
print(length(unrelated_genes))
[1] 709
#subset results to genes in known annotations or bystanders
ctwas_gene_res_subset <- ctwas_gene_res[ctwas_gene_res$genename %in% c(known_annotations, unrelated_genes),]

#assign ctwas and TWAS genes
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

#significance threshold for TWAS
print(sig_thresh)
[1] 4.576
#number of ctwas genes (in known annotations or bystanders)
length(ctwas_genes)
[1] 5
#number of TWAS genes (in known annotations or bystanders)
length(twas_genes)
[1] 58
#sensitivity / recall
sensitivity
  ctwas    TWAS 
0.03448 0.36207 
#specificity / (1 - False Positive Rate)
specificity
 ctwas   TWAS 
0.9958 0.9478 
#precision / PPV / (1 - False Discovery Rate)
precision
 ctwas   TWAS 
0.4000 0.3621 

pip_range <- (0:1000)/1000
sensitivity <- rep(NA, length(pip_range))
specificity <- rep(NA, length(pip_range))

for (index in 1:length(pip_range)){
  pip <- pip_range[index]
  ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>=pip]
  sensitivity[index] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
}

plot(1-specificity, sensitivity, type="l", xlim=c(0,1), ylim=c(0,1), main="", xlab="1 - Specificity", ylab="Sensitivity")
title(expression("ROC Curve for cTWAS (black) and TWAS (" * phantom("red") * ")"))
title(expression(phantom("ROC Curve for cTWAS (black) and TWAS (") * "red" * phantom(")")), col.main="red")

sig_thresh_range <- seq(from=0, to=max(abs(ctwas_gene_res_subset$z)), length.out=length(pip_range))

for (index in 1:length(sig_thresh_range)){
  sig_thresh_plot <- sig_thresh_range[index]
  twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>=sig_thresh_plot]
  sensitivity[index] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
}

lines(1-specificity, sensitivity, xlim=c(0,1), ylim=c(0,1), col="red", lty=1)

abline(a=0,b=1,lty=3)

#add previously computed points from the analysis
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

points(1-specificity_plot["ctwas"], sensitivity_plot["ctwas"], pch=21, bg="black")
points(1-specificity_plot["TWAS"], sensitivity_plot["TWAS"], pch=21, bg="red")

Undetected silver standard genes have low TWAS z-scores or stronger signal from nearby variants

#table of outcomes for silver standard genes
-sort(-table(silver_standard_case))
silver_standard_case
          Not Imputed Insignificant z-score         Nearby SNP(s) 
                   72                    37                    18 
 Detected (PIP > 0.8) Nearby Bystander Gene 
                    2                     1 
#show inconclusive genes
silver_standard_case[silver_standard_case=="Inconclusive"]
named character(0)


sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] GenomicRanges_1.36.1 GenomeInfoDb_1.20.0  IRanges_2.18.1      
 [4] S4Vectors_0.22.1     BiocGenerics_0.30.0  biomaRt_2.40.1      
 [7] readxl_1.3.1         forcats_0.5.1        stringr_1.4.0       
[10] dplyr_1.0.7          purrr_0.3.4          readr_2.1.1         
[13] tidyr_1.1.4          tidyverse_1.3.1      tibble_3.1.6        
[16] WebGestaltR_0.4.4    disgenet2r_0.99.2    enrichR_3.0         
[19] cowplot_1.1.1        ggplot2_3.3.5        workflowr_1.7.0     

loaded via a namespace (and not attached):
  [1] ggbeeswarm_0.6.0       colorspace_2.0-2       rjson_0.2.20          
  [4] ellipsis_0.3.2         rprojroot_2.0.2        XVector_0.24.0        
  [7] fs_1.5.2               rstudioapi_0.13        farver_2.1.0          
 [10] ggrepel_0.9.1          bit64_4.0.5            AnnotationDbi_1.46.0  
 [13] fansi_1.0.2            lubridate_1.8.0        xml2_1.3.3            
 [16] codetools_0.2-16       doParallel_1.0.17      cachem_1.0.6          
 [19] knitr_1.36             jsonlite_1.7.2         apcluster_1.4.8       
 [22] Cairo_1.5-12.2         broom_0.7.10           dbplyr_2.1.1          
 [25] compiler_3.6.1         httr_1.4.2             backports_1.4.1       
 [28] assertthat_0.2.1       Matrix_1.2-18          fastmap_1.1.0         
 [31] cli_3.1.0              later_0.8.0            prettyunits_1.1.1     
 [34] htmltools_0.5.2        tools_3.6.1            igraph_1.2.10         
 [37] GenomeInfoDbData_1.2.1 gtable_0.3.0           glue_1.6.2            
 [40] reshape2_1.4.4         doRNG_1.8.2            Rcpp_1.0.8            
 [43] Biobase_2.44.0         cellranger_1.1.0       jquerylib_0.1.4       
 [46] vctrs_0.3.8            svglite_1.2.2          iterators_1.0.14      
 [49] xfun_0.29              ps_1.6.0               rvest_1.0.2           
 [52] lifecycle_1.0.1        rngtools_1.5.2         XML_3.99-0.3          
 [55] zlibbioc_1.30.0        getPass_0.2-2          scales_1.1.1          
 [58] vroom_1.5.7            hms_1.1.1              promises_1.0.1        
 [61] yaml_2.2.1             curl_4.3.2             memoise_2.0.1         
 [64] ggrastr_1.0.1          gdtools_0.1.9          stringi_1.7.6         
 [67] RSQLite_2.2.8          highr_0.9              foreach_1.5.2         
 [70] rlang_1.0.1            pkgconfig_2.0.3        bitops_1.0-7          
 [73] evaluate_0.14          lattice_0.20-38        labeling_0.4.2        
 [76] bit_4.0.4              processx_3.5.2         tidyselect_1.1.1      
 [79] plyr_1.8.6             magrittr_2.0.2         R6_2.5.1              
 [82] generics_0.1.1         DBI_1.1.2              pillar_1.6.4          
 [85] haven_2.4.3            whisker_0.3-2          withr_2.4.3           
 [88] RCurl_1.98-1.5         modelr_0.1.8           crayon_1.5.0          
 [91] utf8_1.2.2             tzdb_0.2.0             rmarkdown_2.11        
 [94] progress_1.2.2         grid_3.6.1             data.table_1.14.2     
 [97] blob_1.2.2             callr_3.7.0            git2r_0.26.1          
[100] reprex_2.0.1           digest_0.6.29          httpuv_1.5.1          
[103] munsell_0.5.0          beeswarm_0.2.3         vipor_0.4.5