Last updated: 2022-03-16

Checks: 5 2

Knit directory: cTWAS_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ data
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R code/ctwas_config.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version d57314b. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .ipynb_checkpoints/
    Ignored:    data/AF/

Untracked files:
    Untracked:  Rplot.png
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  analysis/SCZ_2020_Brain_Amygdala.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Anterior_cingulate_cortex_BA24.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Caudate_basal_ganglia.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Cerebellar_Hemisphere.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Cerebellum.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Hippocampus.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Nucleus_accumbens_basal_ganglia.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Spinal_cord_cervical_c-1.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Substantia_nigra.Rmd
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/AF_out/
    Untracked:  code/Autism_out/
    Untracked:  code/BMI_S_out/
    Untracked:  code/BMI_out/
    Untracked:  code/Glucose_out/
    Untracked:  code/LDL_S_out/
    Untracked:  code/SCZ_2014_EUR_out/
    Untracked:  code/SCZ_2020_out/
    Untracked:  code/SCZ_S_out/
    Untracked:  code/SCZ_out/
    Untracked:  code/T2D_out/
    Untracked:  code/ctwas_config.R
    Untracked:  code/mapping.R
    Untracked:  code/out/
    Untracked:  code/run_AF_analysis.sbatch
    Untracked:  code/run_AF_analysis.sh
    Untracked:  code/run_AF_ctwas_rss_LDR.R
    Untracked:  code/run_Autism_analysis.sbatch
    Untracked:  code/run_Autism_analysis.sh
    Untracked:  code/run_Autism_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_analysis.sbatch
    Untracked:  code/run_BMI_analysis.sh
    Untracked:  code/run_BMI_analysis_S.sbatch
    Untracked:  code/run_BMI_analysis_S.sh
    Untracked:  code/run_BMI_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_ctwas_rss_LDR_S.R
    Untracked:  code/run_Glucose_analysis.sbatch
    Untracked:  code/run_Glucose_analysis.sh
    Untracked:  code/run_Glucose_ctwas_rss_LDR.R
    Untracked:  code/run_LDL_analysis_S.sbatch
    Untracked:  code/run_LDL_analysis_S.sh
    Untracked:  code/run_LDL_ctwas_rss_LDR_S.R
    Untracked:  code/run_SCZ_2014_EUR_analysis.sbatch
    Untracked:  code/run_SCZ_2014_EUR_analysis.sh
    Untracked:  code/run_SCZ_2014_EUR_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2020_analysis.sbatch
    Untracked:  code/run_SCZ_2020_analysis.sh
    Untracked:  code/run_SCZ_2020_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_analysis.sbatch
    Untracked:  code/run_SCZ_analysis.sh
    Untracked:  code/run_SCZ_analysis_S.sbatch
    Untracked:  code/run_SCZ_analysis_S.sh
    Untracked:  code/run_SCZ_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_ctwas_rss_LDR_S.R
    Untracked:  code/run_T2D_analysis.sbatch
    Untracked:  code/run_T2D_analysis.sh
    Untracked:  code/run_T2D_ctwas_rss_LDR.R
    Untracked:  code/wflow_build.R
    Untracked:  code/wflow_build.sbatch
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/BMI/
    Untracked:  data/PGC3_SCZ_wave3_public.v2.tsv
    Untracked:  data/SCZ/
    Untracked:  data/SCZ_2014_EUR/
    Untracked:  data/SCZ_2020/
    Untracked:  data/SCZ_S/
    Untracked:  data/T2D/
    Untracked:  data/UKBB/
    Untracked:  data/UKBB_SNPs_Info.text
    Untracked:  data/gene_OMIM.txt
    Untracked:  data/gene_pip_0.8.txt
    Untracked:  data/mashr_Heart_Atrial_Appendage.db
    Untracked:  data/mashr_sqtl/
    Untracked:  data/summary_known_genes_annotations.xlsx
    Untracked:  data/untitled.txt

Unstaged changes:
    Modified:   analysis/SCZ_2020_Brain_Cortex.Rmd
    Modified:   analysis/SCZ_2020_Brain_Frontal_Cortex_BA9.Rmd
    Modified:   analysis/SCZ_2020_Brain_Hypothalamus.Rmd
    Modified:   analysis/SCZ_2020_Brain_Putamen_basal_ganglia.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


Weight QC

#number of imputed weights
nrow(qclist_all)
[1] 10920
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
1075  755  637  422  525  619  523  417  398  426  655  624  222  367  373  505 
  17   18   19   20   21   22 
 637  172  840  330  119  279 
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 8752
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.8015

Check convergence of parameters

#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
     gene       snp 
0.0160390 0.0002704 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
 gene   snp 
15.63 12.35 
#report sample size
print(sample_size)
[1] 161405
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]   10920 7394310
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
   gene     snp 
0.01696 0.15297 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.05971 0.79059

Genes with highest PIPs

        genename region_tag susie_pip    mu2       PVE      z num_eqtl
10719     ZNF823      19_10    0.9944  42.57 0.0002623  6.363        2
11817 AC012074.2       2_15    0.9849  30.78 0.0001878  5.469        1
9404      LSMEM2       3_35    0.9812 976.41 0.0059357  4.271        1
2571       TRPV4      12_66    0.9171  24.32 0.0001382  4.416        1
881       KLHL20       1_85    0.9018  34.15 0.0001908  5.800        1
11000    HLA-DMA       6_27    0.8911  80.60 0.0004450 -9.622        2
5988     FAM135B       8_91    0.8845  22.44 0.0001230 -3.461        1
5226    C12orf10      12_33    0.8768  24.05 0.0001306 -4.963        1
392       RETSAT       2_54    0.8725  20.77 0.0001123  3.963        1
4596       DAGLA      11_34    0.8724  21.84 0.0001180 -4.263        1
11773  HIST1H2BN       6_21    0.8688 182.41 0.0009818 13.182        1
6874         ACE      17_37    0.8598  34.26 0.0001825 -5.802        1
108        ELAC2      17_11    0.8590  23.58 0.0001255  5.380        1
63         KMT2E       7_65    0.8574  54.92 0.0002918 -7.571        2
3251       ABCG2       4_59    0.8523  20.31 0.0001072 -3.954        1
7388        GNL3       3_37    0.8488  67.71 0.0003561  9.429        1
5336       CPNE2      16_30    0.8420  21.10 0.0001101 -4.125        1
10370     KCTD21      11_43    0.8406  21.22 0.0001105  4.176        3
11153      KRT81      12_32    0.8276  20.22 0.0001037  4.046        3
11577  LINC01268       6_75    0.8262  21.73 0.0001112 -4.406        1
786       ACADVL       17_6    0.8249  22.67 0.0001158 -4.405        1
146       CELSR3       3_34    0.8167  24.91 0.0001261  4.957        2
2838      PDCD10      3_103    0.8139  23.18 0.0001169 -4.520        1
11413      FANCG       9_27    0.8083  23.32 0.0001168 -4.512        1
11485  LINC00320       21_6    0.8014  31.17 0.0001548  5.610        1

Genes with largest effect sizes

         genename region_tag susie_pip    mu2       PVE        z num_eqtl
9404       LSMEM2       3_35 9.812e-01 976.41 5.936e-03   4.2709        1
212        SEMA3B       3_35 1.430e-06 952.77 8.440e-09   1.0870        1
10292     SLC38A3       3_35 3.286e-07 241.37 4.914e-10  -2.7756        1
127      CACNA2D2       3_35 1.466e-06 217.88 1.980e-09  -0.1392        1
38           RBM6       3_35 5.848e-01 189.79 6.876e-04   4.4688        1
2874        HEMK1       3_35 3.890e-06 183.71 4.427e-09   0.4441        1
11773   HIST1H2BN       6_21 8.688e-01 182.41 9.818e-04  13.1822        1
10138       HYAL3       3_35 1.115e-07 165.11 1.141e-10  -2.5066        1
7423        CAMKV       3_35 1.227e-05 165.05 1.255e-08  -1.7107        1
9          SEMA3F       3_35 7.549e-03 156.39 7.314e-06   4.0127        1
7425        MST1R       3_35 1.636e-04 143.37 1.453e-07  -4.0250        1
13060 RP1-86C11.7       6_21 1.862e-01 124.68 1.438e-04  10.5382        1
13189   LINC02019       3_35 2.585e-06 109.28 1.751e-09   0.3233        2
2875         CISH       3_35 9.531e-07 105.36 6.222e-10  -0.1383        1
7420       RNF123       3_35 1.051e-07  93.36 6.077e-11  -2.3622        1
11035     ABHD16A       6_26 5.043e-01  90.21 2.819e-04  10.7104        1
11039        APOM       6_26 2.953e-01  88.81 1.625e-04  10.6484        1
10109      BTN3A2       6_20 5.022e-02  85.92 2.673e-05   7.6871        3
11710     CYP21A2       6_26 3.482e-02  85.79 1.851e-05 -10.4143        1
12066         C4A       6_26 2.412e-02  83.15 1.242e-05  10.3289        2

Genes with highest PVE

         genename region_tag susie_pip    mu2       PVE      z num_eqtl
9404       LSMEM2       3_35    0.9812 976.41 0.0059357  4.271        1
11773   HIST1H2BN       6_21    0.8688 182.41 0.0009818 13.182        1
38           RBM6       3_35    0.5848 189.79 0.0006876  4.469        1
11000     HLA-DMA       6_27    0.8911  80.60 0.0004450 -9.622        2
7388         GNL3       3_37    0.8488  67.71 0.0003561  9.429        1
63          KMT2E       7_65    0.8574  54.92 0.0002918 -7.571        2
11035     ABHD16A       6_26    0.5043  90.21 0.0002819 10.710        1
10719      ZNF823      19_10    0.9944  42.57 0.0002623  6.363        2
2969        SF3B1      2_117    0.7574  52.96 0.0002485  7.605        1
7973      GATAD2A      19_15    0.7026  52.29 0.0002276 -7.406        2
881        KLHL20       1_85    0.9018  34.15 0.0001908  5.800        1
11817  AC012074.2       2_15    0.9849  30.78 0.0001878  5.469        1
6874          ACE      17_37    0.8598  34.26 0.0001825 -5.802        1
8291       INO80E      16_24    0.4994  53.26 0.0001648  7.551        1
11039        APOM       6_26    0.2953  88.81 0.0001625 10.648        1
7911        PDIA3      15_16    0.6730  38.00 0.0001585  6.314        1
11485   LINC00320       21_6    0.8014  31.17 0.0001548  5.610        1
9437        PUF60       8_94    0.7171  34.53 0.0001534  5.793        1
426       FAM120A       9_47    0.7732  31.55 0.0001511 -5.577        2
13060 RP1-86C11.7       6_21    0.1862 124.68 0.0001438 10.538        1

Genes with largest z scores

         genename region_tag susie_pip    mu2       PVE       z num_eqtl
11773   HIST1H2BN       6_21 0.8687556 182.41 9.818e-04  13.182        1
11035     ABHD16A       6_26 0.5043393  90.21 2.819e-04  10.710        1
11039        APOM       6_26 0.2952848  88.81 1.625e-04  10.648        1
13060 RP1-86C11.7       6_21 0.1862044 124.68 1.438e-04  10.538        1
11710     CYP21A2       6_26 0.0348181  85.79 1.851e-05 -10.414        1
12066         C4A       6_26 0.0241153  83.15 1.242e-05  10.329        2
6075        CNNM2      10_66 0.1968619  49.35 6.019e-05  -9.686        1
11000     HLA-DMA       6_27 0.8910906  80.60 4.450e-04  -9.622        2
455      MPHOSPH9      12_75 0.1238971  74.99 5.756e-05   9.460        1
7388         GNL3       3_37 0.8487735  67.71 3.561e-04   9.429        1
11034      LY6G6C       6_26 0.0067577  50.48 2.114e-06   8.911        2
7389        PBRM1       3_37 0.0074522  55.96 2.584e-06  -8.722        1
6209        ABCB9      12_75 0.0008853  65.35 3.584e-07   8.638        1
9616      ARL6IP4      12_75 0.0008112  64.92 3.263e-07   8.615        1
8109       GLYCTK       3_37 0.0622660  75.32 2.906e-05   8.577        1
12110        TWF2       3_37 0.0393235  68.94 1.680e-05  -8.347        1
9474       HARBI1      11_28 0.3543604  59.61 1.309e-04   8.046        1
8984        ATG13      11_28 0.3543604  59.61 1.309e-04  -8.046        1
2524          MDK      11_28 0.1255455  57.18 4.447e-05  -7.898        1
2895         NEK4       3_37 0.0057114  48.81 1.727e-06   7.898        1

Comparing z scores and PIPs

[1] 0.01566

GO enrichment analysis for genes with PIP>0.5

#number of genes for gene set enrichment
length(genes)
[1] 79
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Cellular_Component_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)

DisGeNET enrichment analysis for genes with PIP>0.5

                                      Description     FDR Ratio BgRatio
30                                      Confusion 0.03072  1/32  1/9703
55                           Gingival Hypertrophy 0.03072  1/32  1/9703
68                    Infant, Premature, Diseases 0.03072  1/32  1/9703
111                              Pneumonia, Viral 0.03072  1/32  1/9703
143                  Left Ventricular Hypertrophy 0.03072  2/32 25/9703
164                             Speech impairment 0.03072  1/32  1/9703
165                                 Derealization 0.03072  1/32  1/9703
175 Spondylometaphyseal dysplasia, Kozlowski type 0.03072  1/32  1/9703
176                           Metatropic dwarfism 0.03072  1/32  1/9703
203                            Brachyolmia Type 3 0.03072  1/32  1/9703

WebGestalt enrichment analysis for genes with PIP>0.5

Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL

PIP Manhattan Plot

Warning: 'timedatectl' indicates the non-existent timezone name 'n/a'
Warning: Your system is mis-configured: '/etc/localtime' is not a symlink
Warning: It is strongly recommended to set envionment variable TZ to 'America/
Chicago' (or equivalent)
Warning: ggrepel: 31 unlabeled data points (too many overlaps). Consider
increasing max.overlaps

Sensitivity, specificity and precision for silver standard genes

#number of genes in known annotations
print(length(known_annotations))
[1] 130
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 59
#significance threshold for TWAS
print(sig_thresh)
[1] 4.583
#number of ctwas genes
length(ctwas_genes)
[1] 25
#number of TWAS genes
length(twas_genes)
[1] 171
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
       genename region_tag susie_pip    mu2       PVE      z num_eqtl
392      RETSAT       2_54    0.8725  20.77 0.0001123  3.963        1
9404     LSMEM2       3_35    0.9812 976.41 0.0059357  4.271        1
2838     PDCD10      3_103    0.8139  23.18 0.0001169 -4.520        1
3251      ABCG2       4_59    0.8523  20.31 0.0001072 -3.954        1
11577 LINC01268       6_75    0.8262  21.73 0.0001112 -4.406        1
5988    FAM135B       8_91    0.8845  22.44 0.0001230 -3.461        1
11413     FANCG       9_27    0.8083  23.32 0.0001168 -4.512        1
4596      DAGLA      11_34    0.8724  21.84 0.0001180 -4.263        1
10370    KCTD21      11_43    0.8406  21.22 0.0001105  4.176        3
11153     KRT81      12_32    0.8276  20.22 0.0001037  4.046        3
2571      TRPV4      12_66    0.9171  24.32 0.0001382  4.416        1
5336      CPNE2      16_30    0.8420  21.10 0.0001101 -4.125        1
786      ACADVL       17_6    0.8249  22.67 0.0001158 -4.405        1
#sensitivity / recall
print(sensitivity)
  ctwas    TWAS 
0.03077 0.18462 
#specificity
print(specificity)
 ctwas   TWAS 
0.9981 0.9865 
#precision / PPV
print(precision)
 ctwas   TWAS 
0.1600 0.1404 

cTWAS is more precise than TWAS in distinguishing silver standard and bystander genes

#number of genes in known annotations (with imputed expression)
print(length(known_annotations))
[1] 59
#number of bystander genes (with imputed expression)
print(length(unrelated_genes))
[1] 736
#subset results to genes in known annotations or bystanders
ctwas_gene_res_subset <- ctwas_gene_res[ctwas_gene_res$genename %in% c(known_annotations, unrelated_genes),]

#assign ctwas and TWAS genes
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

#significance threshold for TWAS
print(sig_thresh)
[1] 4.583
#number of ctwas genes (in known annotations or bystanders)
length(ctwas_genes)
[1] 6
#number of TWAS genes (in known annotations or bystanders)
length(twas_genes)
[1] 71
#sensitivity / recall
sensitivity
 ctwas   TWAS 
0.0678 0.4068 
#specificity / (1 - False Positive Rate)
specificity
 ctwas   TWAS 
0.9973 0.9361 
#precision / PPV / (1 - False Discovery Rate)
precision
 ctwas   TWAS 
0.6667 0.3380 

pip_range <- (0:1000)/1000
sensitivity <- rep(NA, length(pip_range))
specificity <- rep(NA, length(pip_range))

for (index in 1:length(pip_range)){
  pip <- pip_range[index]
  ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>=pip]
  sensitivity[index] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
}

plot(1-specificity, sensitivity, type="l", xlim=c(0,1), ylim=c(0,1), main="", xlab="1 - Specificity", ylab="Sensitivity")
title(expression("ROC Curve for cTWAS (black) and TWAS (" * phantom("red") * ")"))
title(expression(phantom("ROC Curve for cTWAS (black) and TWAS (") * "red" * phantom(")")), col.main="red")

sig_thresh_range <- seq(from=0, to=max(abs(ctwas_gene_res_subset$z)), length.out=length(pip_range))

for (index in 1:length(sig_thresh_range)){
  sig_thresh_plot <- sig_thresh_range[index]
  twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>=sig_thresh_plot]
  sensitivity[index] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
}

lines(1-specificity, sensitivity, xlim=c(0,1), ylim=c(0,1), col="red", lty=1)

abline(a=0,b=1,lty=3)

#add previously computed points from the analysis
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

points(1-specificity_plot["ctwas"], sensitivity_plot["ctwas"], pch=21, bg="black")
points(1-specificity_plot["TWAS"], sensitivity_plot["TWAS"], pch=21, bg="red")

Undetected silver standard genes have low TWAS z-scores or stronger signal from nearby variants

#table of outcomes for silver standard genes
-sort(-table(silver_standard_case))
silver_standard_case
          Not Imputed Insignificant z-score         Nearby SNP(s) 
                   71                    35                    19 
 Detected (PIP > 0.8) Nearby Bystander Gene 
                    4                     1 
#show inconclusive genes
silver_standard_case[silver_standard_case=="Inconclusive"]
named character(0)


sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] GenomicRanges_1.36.1 GenomeInfoDb_1.20.0  IRanges_2.18.1      
 [4] S4Vectors_0.22.1     BiocGenerics_0.30.0  biomaRt_2.40.1      
 [7] readxl_1.3.1         forcats_0.5.1        stringr_1.4.0       
[10] dplyr_1.0.7          purrr_0.3.4          readr_2.1.1         
[13] tidyr_1.1.4          tidyverse_1.3.1      tibble_3.1.6        
[16] WebGestaltR_0.4.4    disgenet2r_0.99.2    enrichR_3.0         
[19] cowplot_1.1.1        ggplot2_3.3.5        workflowr_1.7.0     

loaded via a namespace (and not attached):
  [1] ggbeeswarm_0.6.0       colorspace_2.0-2       rjson_0.2.20          
  [4] ellipsis_0.3.2         rprojroot_2.0.2        XVector_0.24.0        
  [7] fs_1.5.2               rstudioapi_0.13        farver_2.1.0          
 [10] ggrepel_0.9.1          bit64_4.0.5            AnnotationDbi_1.46.0  
 [13] fansi_1.0.2            lubridate_1.8.0        xml2_1.3.3            
 [16] codetools_0.2-16       doParallel_1.0.17      cachem_1.0.6          
 [19] knitr_1.36             jsonlite_1.7.2         apcluster_1.4.8       
 [22] Cairo_1.5-12.2         broom_0.7.10           dbplyr_2.1.1          
 [25] compiler_3.6.1         httr_1.4.2             backports_1.4.1       
 [28] assertthat_0.2.1       Matrix_1.2-18          fastmap_1.1.0         
 [31] cli_3.1.0              later_0.8.0            prettyunits_1.1.1     
 [34] htmltools_0.5.2        tools_3.6.1            igraph_1.2.10         
 [37] GenomeInfoDbData_1.2.1 gtable_0.3.0           glue_1.6.2            
 [40] reshape2_1.4.4         doRNG_1.8.2            Rcpp_1.0.8            
 [43] Biobase_2.44.0         cellranger_1.1.0       jquerylib_0.1.4       
 [46] vctrs_0.3.8            svglite_1.2.2          iterators_1.0.14      
 [49] xfun_0.29              ps_1.6.0               rvest_1.0.2           
 [52] lifecycle_1.0.1        rngtools_1.5.2         XML_3.99-0.3          
 [55] zlibbioc_1.30.0        getPass_0.2-2          scales_1.1.1          
 [58] vroom_1.5.7            hms_1.1.1              promises_1.0.1        
 [61] yaml_2.2.1             curl_4.3.2             memoise_2.0.1         
 [64] ggrastr_1.0.1          gdtools_0.1.9          stringi_1.7.6         
 [67] RSQLite_2.2.8          highr_0.9              foreach_1.5.2         
 [70] rlang_1.0.1            pkgconfig_2.0.3        bitops_1.0-7          
 [73] evaluate_0.14          lattice_0.20-38        labeling_0.4.2        
 [76] bit_4.0.4              processx_3.5.2         tidyselect_1.1.1      
 [79] plyr_1.8.6             magrittr_2.0.2         R6_2.5.1              
 [82] generics_0.1.1         DBI_1.1.2              pillar_1.6.4          
 [85] haven_2.4.3            whisker_0.3-2          withr_2.4.3           
 [88] RCurl_1.98-1.5         modelr_0.1.8           crayon_1.5.0          
 [91] utf8_1.2.2             tzdb_0.2.0             rmarkdown_2.11        
 [94] progress_1.2.2         grid_3.6.1             data.table_1.14.2     
 [97] blob_1.2.2             callr_3.7.0            git2r_0.26.1          
[100] reprex_2.0.1           digest_0.6.29          httpuv_1.5.1          
[103] munsell_0.5.0          beeswarm_0.2.3         vipor_0.4.5