Last updated: 2022-05-19

Checks: 5 2

Knit directory: cTWAS_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ data
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R code/ctwas_config.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version bcaadf3. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .ipynb_checkpoints/

Untracked files:
    Untracked:  G_list.RData
    Untracked:  Rplot.png
    Untracked:  SCZ_annotation.xlsx
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/AF_out/
    Untracked:  code/Autism_out/
    Untracked:  code/BMI_S_out/
    Untracked:  code/BMI_out/
    Untracked:  code/Glucose_out/
    Untracked:  code/LDL_S_out/
    Untracked:  code/SCZ_2014_EUR_out/
    Untracked:  code/SCZ_2018_S_out/
    Untracked:  code/SCZ_2018_out/
    Untracked:  code/SCZ_2020_Single_out/
    Untracked:  code/SCZ_2020_out/
    Untracked:  code/SCZ_S_out/
    Untracked:  code/SCZ_out/
    Untracked:  code/T2D_out/
    Untracked:  code/ctwas_config.R
    Untracked:  code/mapping.R
    Untracked:  code/out/
    Untracked:  code/process_scz_2018_snps.R
    Untracked:  code/run_AF_analysis.sbatch
    Untracked:  code/run_AF_analysis.sh
    Untracked:  code/run_AF_ctwas_rss_LDR.R
    Untracked:  code/run_Autism_analysis.sbatch
    Untracked:  code/run_Autism_analysis.sh
    Untracked:  code/run_Autism_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_analysis.sbatch
    Untracked:  code/run_BMI_analysis.sh
    Untracked:  code/run_BMI_analysis_S.sbatch
    Untracked:  code/run_BMI_analysis_S.sh
    Untracked:  code/run_BMI_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_ctwas_rss_LDR_S.R
    Untracked:  code/run_Glucose_analysis.sbatch
    Untracked:  code/run_Glucose_analysis.sh
    Untracked:  code/run_Glucose_ctwas_rss_LDR.R
    Untracked:  code/run_LDL_analysis_S.sbatch
    Untracked:  code/run_LDL_analysis_S.sh
    Untracked:  code/run_LDL_ctwas_rss_LDR_S.R
    Untracked:  code/run_SCZ_2014_EUR_analysis.sbatch
    Untracked:  code/run_SCZ_2014_EUR_analysis.sh
    Untracked:  code/run_SCZ_2014_EUR_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2018_analysis.sbatch
    Untracked:  code/run_SCZ_2018_analysis.sh
    Untracked:  code/run_SCZ_2018_analysis_S.sbatch
    Untracked:  code/run_SCZ_2018_analysis_S.sh
    Untracked:  code/run_SCZ_2018_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2018_ctwas_rss_LDR_S.R
    Untracked:  code/run_SCZ_2020_Single_analysis.sbatch
    Untracked:  code/run_SCZ_2020_Single_analysis.sh
    Untracked:  code/run_SCZ_2020_Single_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2020_analysis.sbatch
    Untracked:  code/run_SCZ_2020_analysis.sh
    Untracked:  code/run_SCZ_2020_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_analysis.sbatch
    Untracked:  code/run_SCZ_analysis.sh
    Untracked:  code/run_SCZ_analysis_S.sbatch
    Untracked:  code/run_SCZ_analysis_S.sh
    Untracked:  code/run_SCZ_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_ctwas_rss_LDR_S.R
    Untracked:  code/run_T2D_analysis.sbatch
    Untracked:  code/run_T2D_analysis.sh
    Untracked:  code/run_T2D_ctwas_rss_LDR.R
    Untracked:  code/wflow_build.R
    Untracked:  code/wflow_build.sbatch
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/GO_Terms/
    Untracked:  data/PGC3_SCZ_wave3_public.v2.tsv
    Untracked:  data/SCZ/
    Untracked:  data/SCZ_2014_EUR/
    Untracked:  data/SCZ_2018/
    Untracked:  data/SCZ_2018_S/
    Untracked:  data/SCZ_2020/
    Untracked:  data/SCZ_S/
    Untracked:  data/Supplementary Table 15 - MAGMA.xlsx
    Untracked:  data/Supplementary Table 20 - Prioritised Genes.xlsx
    Untracked:  data/T2D/
    Untracked:  data/UKBB/
    Untracked:  data/UKBB_SNPs_Info.text
    Untracked:  data/gene_OMIM.txt
    Untracked:  data/gene_pip_0.8.txt
    Untracked:  data/mashr_Heart_Atrial_Appendage.db
    Untracked:  data/mashr_sqtl/
    Untracked:  data/scz_2018.RDS
    Untracked:  data/summary_known_genes_annotations.xlsx
    Untracked:  data/untitled.txt
    Untracked:  top_genes_32.txt
    Untracked:  top_genes_37.txt
    Untracked:  top_genes_43.txt
    Untracked:  top_genes_54.txt
    Untracked:  top_genes_81.txt
    Untracked:  z_snp_pos_SCZ.RData
    Untracked:  z_snp_pos_SCZ_2014_EUR.RData
    Untracked:  z_snp_pos_SCZ_2018.RData
    Untracked:  z_snp_pos_SCZ_2020.RData

Unstaged changes:
    Deleted:    analysis/BMI_S_results.Rmd
    Modified:   analysis/SCZ_2018_Brain_Amygdala_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Anterior_cingulate_cortex_BA24_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Caudate_basal_ganglia_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cerebellar_Hemisphere_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cerebellum_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cortex_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Frontal_Cortex_BA9_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Hippocampus_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Hypothalamus_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Nucleus_accumbens_basal_ganglia_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Putamen_basal_ganglia_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Spinal_cord_cervical_c-1_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Substantia_nigra_S.Rmd
    Modified:   analysis/ttt.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/SCZ_2018_Brain_Spinal_cord_cervical_c-1_S.Rmd) and HTML (docs/SCZ_2018_Brain_Spinal_cord_cervical_c-1_S.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd bcaadf3 sq-96 2022-05-19 update
html bcaadf3 sq-96 2022-05-19 update
Rmd be614ed sq-96 2022-05-19 update
html be614ed sq-96 2022-05-19 update
Rmd 7d08c9b sq-96 2022-05-18 update
html 7d08c9b sq-96 2022-05-18 update
Rmd 2749be9 sq-96 2022-05-12 update
html 2749be9 sq-96 2022-05-12 update
html 011327d sq-96 2022-05-12 update
Rmd 6c6abbd sq-96 2022-05-12 update

library(reticulate)
use_python("/scratch/midway2/shengqian/miniconda3/envs/PythonForR/bin/python",required=T)

Weight QC

#number of imputed weights
nrow(qclist_all)
[1] 18945
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
1715 1338 1100  796  767 1008 1092  641  786  887 1173 1022  398  671  695  738 
  17   18   19   20   21   22 
1343  294 1317  607   40  517 
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 16803
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.8869
INFO:numexpr.utils:Note: NumExpr detected 56 cores but "NUMEXPR_MAX_THREADS" not set, so enforcing safe limit of 8.
finish

Attaching package: 'dplyr'
The following objects are masked from 'package:stats':

    filter, lag
The following objects are masked from 'package:base':

    intersect, setdiff, setequal, union

Check convergence of parameters

Version Author Date
2749be9 sq-96 2022-05-12
     gene       snp 
0.0076295 0.0003131 
 gene   snp 
11.87 10.31 
[1] 105318
[1]    7065 6309950
    gene      snp 
0.006076 0.193399 
[1] 0.01706 1.11082

Genes with highest PIPs

Version Author Date
bcaadf3 sq-96 2022-05-19
be614ed sq-96 2022-05-19
2749be9 sq-96 2022-05-12
         genename region_tag susie_pip   mu2       PVE      z num_intron
2184     FAM177A1       14_9    1.0733 23.92 0.0002148  4.849         15
4793       R3HDM2      12_36    1.0282 43.35 0.0004166 -6.634          4
684          BDNF      11_19    0.9214 22.76 0.0001801  4.348          4
3152        LAMA5      20_36    0.9075 24.09 0.0001723 -4.329         11
6106        THAP8      19_25    0.8578 19.74 0.0001376  3.847          2
630        B3GAT1      11_84    0.8550 21.97 0.0001383  4.272          7
5428        SF3B1      2_117    0.8501 45.64 0.0003002  7.053          4
434        APOPT1      14_54    0.8410 45.01 0.0002955  7.429          6
4751        PTPRF       1_27    0.8342 37.73 0.0002420  6.680          4
4439        PLCB2      15_14    0.8314 24.84 0.0001344 -4.470          6
4737         PTPA       9_66    0.8179 23.79 0.0001480 -4.650          5
1532 CTC-487M23.8       5_67    0.8126 21.51 0.0001335 -4.125          2
274          AKT3      1_128    0.7738 35.42 0.0001884 -6.291          6
144        ACTR1B       2_57    0.7606 20.11 0.0001094 -3.978          4
3701       MRPS33       7_87    0.7403 24.49 0.0001196  4.304          5
2129        EXTL2       1_62    0.7386 22.86 0.0001145 -3.966          3
1859          DST       6_42    0.7365 29.73 0.0001294  4.205          8
5349      SDCCAG8      1_128    0.7307 26.43 0.0001288  5.301          8
1849       DPYSL3       5_86    0.7277 22.63 0.0001138 -4.157          1
1486        CRTAP       3_24    0.7270 22.03 0.0001106  3.929          1
     num_sqtl
2184       16
4793        4
684         4
3152       14
6106        2
630        10
5428        4
434         9
4751        4
4439        7
4737        5
1532        2
274         6
144         4
3701        7
2129        5
1859        9
5349       11
1849        1
1486        1

Genes with highest PVE

         genename region_tag susie_pip    mu2       PVE       z num_intron
433          APOM       6_26    0.4991 639.82 0.0015126 -11.590          3
4793       R3HDM2      12_36    1.0282  43.35 0.0004166  -6.634          4
5428        SF3B1      2_117    0.8501  45.64 0.0003002   7.053          4
434        APOPT1      14_54    0.8410  45.01 0.0002955   7.429          6
4751        PTPRF       1_27    0.8342  37.73 0.0002420   6.680          4
2184     FAM177A1       14_9    1.0733  23.92 0.0002148   4.849         15
1729         DGKZ      11_28    0.6904  47.56 0.0002134  -7.216          3
4070        NT5C2      10_66    0.6840  47.62 0.0001954  -8.511         10
274          AKT3      1_128    0.7738  35.42 0.0001884  -6.291          6
6634         VARS       6_26    0.1755 640.87 0.0001874 -11.548          1
684          BDNF      11_19    0.9214  22.76 0.0001801   4.348          4
5988        TAOK2      16_24    0.6314  47.43 0.0001738   7.024          3
3152        LAMA5      20_36    0.9075  24.09 0.0001723  -4.329         11
4737         PTPA       9_66    0.8179  23.79 0.0001480  -4.650          5
630        B3GAT1      11_84    0.8550  21.97 0.0001383   4.272          7
6106        THAP8      19_25    0.8578  19.74 0.0001376   3.847          2
4439        PLCB2      15_14    0.8314  24.84 0.0001344  -4.470          6
1532 CTC-487M23.8       5_67    0.8126  21.51 0.0001335  -4.125          2
1859          DST       6_42    0.7365  29.73 0.0001294   4.205          8
5349      SDCCAG8      1_128    0.7307  26.43 0.0001288   5.301          8
     num_sqtl
433         3
4793        4
5428        4
434         9
4751        4
2184       16
1729        3
4070       14
274         6
6634        1
684         4
5988        3
3152       14
4737        5
630        10
6106        2
4439        7
1532        2
1859        9
5349       11

Comparing z scores and PIPs

Version Author Date
be614ed sq-96 2022-05-19
2749be9 sq-96 2022-05-12

Version Author Date
bcaadf3 sq-96 2022-05-19
be614ed sq-96 2022-05-19
2749be9 sq-96 2022-05-12
[1] 0.01699
         genename region_tag susie_pip    mu2       PVE       z num_intron
4339        PGBD1       6_22 6.031e-02 161.09 3.090e-06  13.087          3
433          APOM       6_26 4.991e-01 639.82 1.513e-03 -11.590          3
6634         VARS       6_26 1.755e-01 640.87 1.874e-04 -11.548          1
883      C6orf136       6_24 8.488e-02  80.36 5.498e-06  11.031          2
2329        FLOT1       6_24 2.639e-01  80.69 5.241e-05 -10.981          8
3350         LST1       6_25 2.759e-02  94.96 5.477e-07 -10.892          3
763        BTN3A2       6_20 1.055e-01  92.12 4.453e-06 -10.665          5
641          BAG6       6_26 1.878e-09 511.85 1.714e-20 -10.247          6
4613         PPT2       6_26 4.883e-12 476.52 1.079e-25 -10.061          4
2575        GPSM3       6_26 1.208e-12 426.07 5.903e-27   9.608          1
6361       TRIM38       6_20 2.769e-02  74.35 3.015e-07   9.596          2
1069       CCHCR1       6_25 4.787e-02  67.97 6.243e-07  -9.508          8
1944        EGFL8       6_26 1.443e-15 362.39 7.168e-33  -9.298          4
1675         DDR1       6_25 1.294e-02  70.64 1.123e-07   9.016          1
2736      HLA-DMA       6_27 3.059e-01  76.01 3.919e-05   8.588          7
7059      ZSCAN23       6_22 9.038e-03  46.89 3.637e-08   8.541          1
4070        NT5C2      10_66 6.840e-01  47.62 1.954e-04  -8.511         10
3393        MAIP1      2_118 2.868e-01  45.08 3.521e-05   7.980          1
529         AS3MT      10_66 2.050e-01  42.75 1.691e-05  -7.907          2
5184 RP5-874C20.8       6_22 3.448e-02  38.07 3.077e-07   7.631          4
     num_sqtl
4339        3
433         3
6634        1
883         2
2329        8
3350        3
763         5
641         6
4613        4
2575        2
6361        2
1069       12
1944        5
1675        1
2736        8
7059        1
4070       14
3393        1
529         2
5184        4

GO enrichment analysis for genes with PIP>0.5

#number of genes for gene set enrichment
length(genes)
[1] 53
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"

Version Author Date
bcaadf3 sq-96 2022-05-19
be614ed sq-96 2022-05-19
2749be9 sq-96 2022-05-12
                                                               Term Overlap
1 positive regulation of neuron projection development (GO:0010976)    5/88
2      positive regulation of phospholipase C activity (GO:0010863)    3/43
3  positive regulation of cell projection organization (GO:0031346)   4/117
4                       regulation of receptor binding (GO:1900120)    2/10
  Adjusted.P.value                           Genes
1         0.001904 BDNF;NTRK3;DPYSL3;SERPINI1;LRP8
2         0.040757                BDNF;NTRK3;PLCB2
3         0.040757      BDNF;NTRK3;DPYSL3;SERPINI1
4         0.040757                      BDNF;PTPRF
[1] "GO_Cellular_Component_2021"

Version Author Date
bcaadf3 sq-96 2022-05-19
be614ed sq-96 2022-05-19
2749be9 sq-96 2022-05-12
                                              Term Overlap Adjusted.P.value
1 protein phosphatase type 2A complex (GO:0000159)    2/17          0.04952
2                            U2 snRNP (GO:0005686)    2/20          0.04952
         Genes
1 PTPA;PPP2R2A
2 SNRPA1;SF3B1
[1] "GO_Molecular_Function_2021"

Version Author Date
bcaadf3 sq-96 2022-05-19
be614ed sq-96 2022-05-19
2749be9 sq-96 2022-05-12
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)

DisGeNET enrichment analysis for genes with PIP>0.5

                                                  Description     FDR Ratio
55                                                    Measles 0.03696  1/29
94                              Electroencephalogram abnormal 0.03696  1/29
100                                  Congenital absent nipple 0.03696  1/29
156           Congenital absence of breast with absent nipple 0.03696  1/29
216                          Atrial Fibrillation, Familial, 3 0.03696  1/29
220                          Osteogenesis Imperfecta Type VII 0.03696  1/29
221 Familial encephalopathy with neuroserpin inclusion bodies 0.03696  1/29
224                            SHORT QT SYNDROME 2 (disorder) 0.03696  1/29
229                                         Short Qt Syndrome 0.03696  1/29
231 HEMOLYTIC UREMIC SYNDROME, ATYPICAL, SUSCEPTIBILITY TO, 2 0.03696  1/29
    BgRatio
55   1/9703
94   1/9703
100  1/9703
156  1/9703
216  1/9703
220  1/9703
221  1/9703
224  1/9703
229  1/9703
231  1/9703

WebGestalt enrichment analysis for genes with PIP>0.5

Warning: replacing previous import 'lifecycle::last_warnings' by
'rlang::last_warnings' when loading 'hms'
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL

PIP Manhattan Plot

Warning: ggrepel: 8 unlabeled data points (too many overlaps). Consider
increasing max.overlaps

Version Author Date
bcaadf3 sq-96 2022-05-19
be614ed sq-96 2022-05-19
7d08c9b sq-96 2022-05-18
2749be9 sq-96 2022-05-12

Sensitivity, specificity and precision for silver standard genes

#number of genes in known annotations
print(length(known_annotations))
[1] 130
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 46
#significance threshold for TWAS
print(sig_thresh)
[1] 4.491
#number of ctwas genes
length(ctwas_genes)
[1] 12
#number of TWAS genes
length(twas_genes)
[1] 120
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
         genename region_tag susie_pip   mu2       PVE      z num_intron
630        B3GAT1      11_84    0.8550 21.97 0.0001383  4.272          7
684          BDNF      11_19    0.9214 22.76 0.0001801  4.348          4
1532 CTC-487M23.8       5_67    0.8126 21.51 0.0001335 -4.125          2
3152        LAMA5      20_36    0.9075 24.09 0.0001723 -4.329         11
4439        PLCB2      15_14    0.8314 24.84 0.0001344 -4.470          6
6106        THAP8      19_25    0.8578 19.74 0.0001376  3.847          2
     num_sqtl
630        10
684         4
1532        2
3152       14
4439        7
6106        2
#sensitivity / recall
print(sensitivity)
  ctwas    TWAS 
0.02308 0.12308 
#specificity
print(specificity)
 ctwas   TWAS 
0.9987 0.9852 
#precision / PPV
print(precision)
 ctwas   TWAS 
0.2500 0.1333 

sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] readxl_1.4.0      forcats_0.5.1     stringr_1.4.0     purrr_0.3.4      
 [5] readr_1.4.0       tidyr_1.1.3       tidyverse_1.3.1   tibble_3.1.7     
 [9] WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0       cowplot_1.1.1    
[13] ggplot2_3.3.5     dplyr_1.0.7       reticulate_1.25   workflowr_1.7.0  

loaded via a namespace (and not attached):
 [1] fs_1.5.0          lubridate_1.7.10  doParallel_1.0.16 httr_1.4.2       
 [5] rprojroot_2.0.2   tools_4.1.0       backports_1.2.1   doRNG_1.8.2      
 [9] bslib_0.2.5.1     utf8_1.2.1        R6_2.5.0          vipor_0.4.5      
[13] DBI_1.1.1         colorspace_2.0-2  withr_2.4.2       ggrastr_1.0.1    
[17] tidyselect_1.1.1  processx_3.5.2    curl_4.3.2        compiler_4.1.0   
[21] git2r_0.28.0      rvest_1.0.0       cli_3.0.0         Cairo_1.5-15     
[25] xml2_1.3.2        labeling_0.4.2    sass_0.4.0        scales_1.1.1     
[29] callr_3.7.0       systemfonts_1.0.4 apcluster_1.4.9   digest_0.6.27    
[33] rmarkdown_2.9     svglite_2.0.0     pkgconfig_2.0.3   htmltools_0.5.1.1
[37] dbplyr_2.1.1      highr_0.9         rlang_1.0.2       rstudioapi_0.13  
[41] jquerylib_0.1.4   farver_2.1.0      generics_0.1.0    jsonlite_1.7.2   
[45] magrittr_2.0.1    Matrix_1.3-3      ggbeeswarm_0.6.0  Rcpp_1.0.7       
[49] munsell_0.5.0     fansi_0.5.0       lifecycle_1.0.0   stringi_1.6.2    
[53] whisker_0.4       yaml_2.2.1        plyr_1.8.6        grid_4.1.0       
[57] ggrepel_0.9.1     parallel_4.1.0    promises_1.2.0.1  crayon_1.4.1     
[61] lattice_0.20-44   haven_2.4.1       hms_1.1.0         knitr_1.33       
[65] ps_1.6.0          pillar_1.7.0      igraph_1.2.6      rjson_0.2.20     
[69] rngtools_1.5      reshape2_1.4.4    codetools_0.2-18  reprex_2.0.0     
[73] glue_1.4.2        evaluate_0.14     getPass_0.2-2     modelr_0.1.8     
[77] data.table_1.14.0 png_0.1-7         vctrs_0.3.8       httpuv_1.6.1     
[81] foreach_1.5.1     cellranger_1.1.0  gtable_0.3.0      assertthat_0.2.1 
[85] xfun_0.24         broom_0.7.8       later_1.2.0       iterators_1.0.13 
[89] beeswarm_0.4.0    ellipsis_0.3.2    here_1.0.1