Last updated: 2022-05-19
Checks: 5 2
Knit directory: cTWAS_analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish
to commit the R Markdown file and build the HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20211220)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.
absolute | relative |
---|---|
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ | data |
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R | code/ctwas_config.R |
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version bcaadf3. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .ipynb_checkpoints/
Untracked files:
Untracked: G_list.RData
Untracked: Rplot.png
Untracked: SCZ_annotation.xlsx
Untracked: analysis/.ipynb_checkpoints/
Untracked: code/.ipynb_checkpoints/
Untracked: code/AF_out/
Untracked: code/Autism_out/
Untracked: code/BMI_S_out/
Untracked: code/BMI_out/
Untracked: code/Glucose_out/
Untracked: code/LDL_S_out/
Untracked: code/SCZ_2014_EUR_out/
Untracked: code/SCZ_2018_S_out/
Untracked: code/SCZ_2018_out/
Untracked: code/SCZ_2020_Single_out/
Untracked: code/SCZ_2020_out/
Untracked: code/SCZ_S_out/
Untracked: code/SCZ_out/
Untracked: code/T2D_out/
Untracked: code/ctwas_config.R
Untracked: code/mapping.R
Untracked: code/out/
Untracked: code/process_scz_2018_snps.R
Untracked: code/run_AF_analysis.sbatch
Untracked: code/run_AF_analysis.sh
Untracked: code/run_AF_ctwas_rss_LDR.R
Untracked: code/run_Autism_analysis.sbatch
Untracked: code/run_Autism_analysis.sh
Untracked: code/run_Autism_ctwas_rss_LDR.R
Untracked: code/run_BMI_analysis.sbatch
Untracked: code/run_BMI_analysis.sh
Untracked: code/run_BMI_analysis_S.sbatch
Untracked: code/run_BMI_analysis_S.sh
Untracked: code/run_BMI_ctwas_rss_LDR.R
Untracked: code/run_BMI_ctwas_rss_LDR_S.R
Untracked: code/run_Glucose_analysis.sbatch
Untracked: code/run_Glucose_analysis.sh
Untracked: code/run_Glucose_ctwas_rss_LDR.R
Untracked: code/run_LDL_analysis_S.sbatch
Untracked: code/run_LDL_analysis_S.sh
Untracked: code/run_LDL_ctwas_rss_LDR_S.R
Untracked: code/run_SCZ_2014_EUR_analysis.sbatch
Untracked: code/run_SCZ_2014_EUR_analysis.sh
Untracked: code/run_SCZ_2014_EUR_ctwas_rss_LDR.R
Untracked: code/run_SCZ_2018_analysis.sbatch
Untracked: code/run_SCZ_2018_analysis.sh
Untracked: code/run_SCZ_2018_analysis_S.sbatch
Untracked: code/run_SCZ_2018_analysis_S.sh
Untracked: code/run_SCZ_2018_ctwas_rss_LDR.R
Untracked: code/run_SCZ_2018_ctwas_rss_LDR_S.R
Untracked: code/run_SCZ_2020_Single_analysis.sbatch
Untracked: code/run_SCZ_2020_Single_analysis.sh
Untracked: code/run_SCZ_2020_Single_ctwas_rss_LDR.R
Untracked: code/run_SCZ_2020_analysis.sbatch
Untracked: code/run_SCZ_2020_analysis.sh
Untracked: code/run_SCZ_2020_ctwas_rss_LDR.R
Untracked: code/run_SCZ_analysis.sbatch
Untracked: code/run_SCZ_analysis.sh
Untracked: code/run_SCZ_analysis_S.sbatch
Untracked: code/run_SCZ_analysis_S.sh
Untracked: code/run_SCZ_ctwas_rss_LDR.R
Untracked: code/run_SCZ_ctwas_rss_LDR_S.R
Untracked: code/run_T2D_analysis.sbatch
Untracked: code/run_T2D_analysis.sh
Untracked: code/run_T2D_ctwas_rss_LDR.R
Untracked: code/wflow_build.R
Untracked: code/wflow_build.sbatch
Untracked: data/.ipynb_checkpoints/
Untracked: data/GO_Terms/
Untracked: data/PGC3_SCZ_wave3_public.v2.tsv
Untracked: data/SCZ/
Untracked: data/SCZ_2014_EUR/
Untracked: data/SCZ_2018/
Untracked: data/SCZ_2018_S/
Untracked: data/SCZ_2020/
Untracked: data/SCZ_S/
Untracked: data/Supplementary Table 15 - MAGMA.xlsx
Untracked: data/Supplementary Table 20 - Prioritised Genes.xlsx
Untracked: data/T2D/
Untracked: data/UKBB/
Untracked: data/UKBB_SNPs_Info.text
Untracked: data/gene_OMIM.txt
Untracked: data/gene_pip_0.8.txt
Untracked: data/mashr_Heart_Atrial_Appendage.db
Untracked: data/mashr_sqtl/
Untracked: data/scz_2018.RDS
Untracked: data/summary_known_genes_annotations.xlsx
Untracked: data/untitled.txt
Untracked: top_genes_32.txt
Untracked: top_genes_37.txt
Untracked: top_genes_43.txt
Untracked: top_genes_54.txt
Untracked: top_genes_81.txt
Untracked: z_snp_pos_SCZ.RData
Untracked: z_snp_pos_SCZ_2014_EUR.RData
Untracked: z_snp_pos_SCZ_2018.RData
Untracked: z_snp_pos_SCZ_2020.RData
Unstaged changes:
Deleted: analysis/BMI_S_results.Rmd
Modified: analysis/SCZ_2018_Brain_Amygdala_S.Rmd
Modified: analysis/SCZ_2018_Brain_Anterior_cingulate_cortex_BA24_S.Rmd
Modified: analysis/SCZ_2018_Brain_Caudate_basal_ganglia_S.Rmd
Modified: analysis/SCZ_2018_Brain_Cerebellar_Hemisphere_S.Rmd
Modified: analysis/SCZ_2018_Brain_Cerebellum_S.Rmd
Modified: analysis/SCZ_2018_Brain_Cortex_S.Rmd
Modified: analysis/SCZ_2018_Brain_Frontal_Cortex_BA9_S.Rmd
Modified: analysis/SCZ_2018_Brain_Hippocampus_S.Rmd
Modified: analysis/SCZ_2018_Brain_Hypothalamus_S.Rmd
Modified: analysis/SCZ_2018_Brain_Nucleus_accumbens_basal_ganglia_S.Rmd
Modified: analysis/SCZ_2018_Brain_Putamen_basal_ganglia_S.Rmd
Modified: analysis/SCZ_2018_Brain_Spinal_cord_cervical_c-1_S.Rmd
Modified: analysis/SCZ_2018_Brain_Substantia_nigra_S.Rmd
Modified: analysis/ttt.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/SCZ_2018_Brain_Spinal_cord_cervical_c-1_S.Rmd
) and HTML (docs/SCZ_2018_Brain_Spinal_cord_cervical_c-1_S.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | bcaadf3 | sq-96 | 2022-05-19 | update |
html | bcaadf3 | sq-96 | 2022-05-19 | update |
Rmd | be614ed | sq-96 | 2022-05-19 | update |
html | be614ed | sq-96 | 2022-05-19 | update |
Rmd | 7d08c9b | sq-96 | 2022-05-18 | update |
html | 7d08c9b | sq-96 | 2022-05-18 | update |
Rmd | 2749be9 | sq-96 | 2022-05-12 | update |
html | 2749be9 | sq-96 | 2022-05-12 | update |
html | 011327d | sq-96 | 2022-05-12 | update |
Rmd | 6c6abbd | sq-96 | 2022-05-12 | update |
library(reticulate)
use_python("/scratch/midway2/shengqian/miniconda3/envs/PythonForR/bin/python",required=T)
#number of imputed weights
nrow(qclist_all)
[1] 18945
#number of imputed weights by chromosome
table(qclist_all$chr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1715 1338 1100 796 767 1008 1092 641 786 887 1173 1022 398 671 695 738
17 18 19 20 21 22
1343 294 1317 607 40 517
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 16803
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.8869
INFO:numexpr.utils:Note: NumExpr detected 56 cores but "NUMEXPR_MAX_THREADS" not set, so enforcing safe limit of 8.
finish
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
filter, lag
The following objects are masked from 'package:base':
intersect, setdiff, setequal, union
Version | Author | Date |
---|---|---|
2749be9 | sq-96 | 2022-05-12 |
gene snp
0.0076295 0.0003131
gene snp
11.87 10.31
[1] 105318
[1] 7065 6309950
gene snp
0.006076 0.193399
[1] 0.01706 1.11082
genename region_tag susie_pip mu2 PVE z num_intron
2184 FAM177A1 14_9 1.0733 23.92 0.0002148 4.849 15
4793 R3HDM2 12_36 1.0282 43.35 0.0004166 -6.634 4
684 BDNF 11_19 0.9214 22.76 0.0001801 4.348 4
3152 LAMA5 20_36 0.9075 24.09 0.0001723 -4.329 11
6106 THAP8 19_25 0.8578 19.74 0.0001376 3.847 2
630 B3GAT1 11_84 0.8550 21.97 0.0001383 4.272 7
5428 SF3B1 2_117 0.8501 45.64 0.0003002 7.053 4
434 APOPT1 14_54 0.8410 45.01 0.0002955 7.429 6
4751 PTPRF 1_27 0.8342 37.73 0.0002420 6.680 4
4439 PLCB2 15_14 0.8314 24.84 0.0001344 -4.470 6
4737 PTPA 9_66 0.8179 23.79 0.0001480 -4.650 5
1532 CTC-487M23.8 5_67 0.8126 21.51 0.0001335 -4.125 2
274 AKT3 1_128 0.7738 35.42 0.0001884 -6.291 6
144 ACTR1B 2_57 0.7606 20.11 0.0001094 -3.978 4
3701 MRPS33 7_87 0.7403 24.49 0.0001196 4.304 5
2129 EXTL2 1_62 0.7386 22.86 0.0001145 -3.966 3
1859 DST 6_42 0.7365 29.73 0.0001294 4.205 8
5349 SDCCAG8 1_128 0.7307 26.43 0.0001288 5.301 8
1849 DPYSL3 5_86 0.7277 22.63 0.0001138 -4.157 1
1486 CRTAP 3_24 0.7270 22.03 0.0001106 3.929 1
num_sqtl
2184 16
4793 4
684 4
3152 14
6106 2
630 10
5428 4
434 9
4751 4
4439 7
4737 5
1532 2
274 6
144 4
3701 7
2129 5
1859 9
5349 11
1849 1
1486 1
genename region_tag susie_pip mu2 PVE z num_intron
433 APOM 6_26 0.4991 639.82 0.0015126 -11.590 3
4793 R3HDM2 12_36 1.0282 43.35 0.0004166 -6.634 4
5428 SF3B1 2_117 0.8501 45.64 0.0003002 7.053 4
434 APOPT1 14_54 0.8410 45.01 0.0002955 7.429 6
4751 PTPRF 1_27 0.8342 37.73 0.0002420 6.680 4
2184 FAM177A1 14_9 1.0733 23.92 0.0002148 4.849 15
1729 DGKZ 11_28 0.6904 47.56 0.0002134 -7.216 3
4070 NT5C2 10_66 0.6840 47.62 0.0001954 -8.511 10
274 AKT3 1_128 0.7738 35.42 0.0001884 -6.291 6
6634 VARS 6_26 0.1755 640.87 0.0001874 -11.548 1
684 BDNF 11_19 0.9214 22.76 0.0001801 4.348 4
5988 TAOK2 16_24 0.6314 47.43 0.0001738 7.024 3
3152 LAMA5 20_36 0.9075 24.09 0.0001723 -4.329 11
4737 PTPA 9_66 0.8179 23.79 0.0001480 -4.650 5
630 B3GAT1 11_84 0.8550 21.97 0.0001383 4.272 7
6106 THAP8 19_25 0.8578 19.74 0.0001376 3.847 2
4439 PLCB2 15_14 0.8314 24.84 0.0001344 -4.470 6
1532 CTC-487M23.8 5_67 0.8126 21.51 0.0001335 -4.125 2
1859 DST 6_42 0.7365 29.73 0.0001294 4.205 8
5349 SDCCAG8 1_128 0.7307 26.43 0.0001288 5.301 8
num_sqtl
433 3
4793 4
5428 4
434 9
4751 4
2184 16
1729 3
4070 14
274 6
6634 1
684 4
5988 3
3152 14
4737 5
630 10
6106 2
4439 7
1532 2
1859 9
5349 11
[1] 0.01699
genename region_tag susie_pip mu2 PVE z num_intron
4339 PGBD1 6_22 6.031e-02 161.09 3.090e-06 13.087 3
433 APOM 6_26 4.991e-01 639.82 1.513e-03 -11.590 3
6634 VARS 6_26 1.755e-01 640.87 1.874e-04 -11.548 1
883 C6orf136 6_24 8.488e-02 80.36 5.498e-06 11.031 2
2329 FLOT1 6_24 2.639e-01 80.69 5.241e-05 -10.981 8
3350 LST1 6_25 2.759e-02 94.96 5.477e-07 -10.892 3
763 BTN3A2 6_20 1.055e-01 92.12 4.453e-06 -10.665 5
641 BAG6 6_26 1.878e-09 511.85 1.714e-20 -10.247 6
4613 PPT2 6_26 4.883e-12 476.52 1.079e-25 -10.061 4
2575 GPSM3 6_26 1.208e-12 426.07 5.903e-27 9.608 1
6361 TRIM38 6_20 2.769e-02 74.35 3.015e-07 9.596 2
1069 CCHCR1 6_25 4.787e-02 67.97 6.243e-07 -9.508 8
1944 EGFL8 6_26 1.443e-15 362.39 7.168e-33 -9.298 4
1675 DDR1 6_25 1.294e-02 70.64 1.123e-07 9.016 1
2736 HLA-DMA 6_27 3.059e-01 76.01 3.919e-05 8.588 7
7059 ZSCAN23 6_22 9.038e-03 46.89 3.637e-08 8.541 1
4070 NT5C2 10_66 6.840e-01 47.62 1.954e-04 -8.511 10
3393 MAIP1 2_118 2.868e-01 45.08 3.521e-05 7.980 1
529 AS3MT 10_66 2.050e-01 42.75 1.691e-05 -7.907 2
5184 RP5-874C20.8 6_22 3.448e-02 38.07 3.077e-07 7.631 4
num_sqtl
4339 3
433 3
6634 1
883 2
2329 8
3350 3
763 5
641 6
4613 4
2575 2
6361 2
1069 12
1944 5
1675 1
2736 8
7059 1
4070 14
3393 1
529 2
5184 4
#number of genes for gene set enrichment
length(genes)
[1] 53
Uploading data to Enrichr... Done.
Querying GO_Biological_Process_2021... Done.
Querying GO_Cellular_Component_2021... Done.
Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"
Term Overlap
1 positive regulation of neuron projection development (GO:0010976) 5/88
2 positive regulation of phospholipase C activity (GO:0010863) 3/43
3 positive regulation of cell projection organization (GO:0031346) 4/117
4 regulation of receptor binding (GO:1900120) 2/10
Adjusted.P.value Genes
1 0.001904 BDNF;NTRK3;DPYSL3;SERPINI1;LRP8
2 0.040757 BDNF;NTRK3;PLCB2
3 0.040757 BDNF;NTRK3;DPYSL3;SERPINI1
4 0.040757 BDNF;PTPRF
[1] "GO_Cellular_Component_2021"
Term Overlap Adjusted.P.value
1 protein phosphatase type 2A complex (GO:0000159) 2/17 0.04952
2 U2 snRNP (GO:0005686) 2/20 0.04952
Genes
1 PTPA;PPP2R2A
2 SNRPA1;SF3B1
[1] "GO_Molecular_Function_2021"
[1] Term Overlap Adjusted.P.value Genes
<0 rows> (or 0-length row.names)
Description FDR Ratio
55 Measles 0.03696 1/29
94 Electroencephalogram abnormal 0.03696 1/29
100 Congenital absent nipple 0.03696 1/29
156 Congenital absence of breast with absent nipple 0.03696 1/29
216 Atrial Fibrillation, Familial, 3 0.03696 1/29
220 Osteogenesis Imperfecta Type VII 0.03696 1/29
221 Familial encephalopathy with neuroserpin inclusion bodies 0.03696 1/29
224 SHORT QT SYNDROME 2 (disorder) 0.03696 1/29
229 Short Qt Syndrome 0.03696 1/29
231 HEMOLYTIC UREMIC SYNDROME, ATYPICAL, SUSCEPTIBILITY TO, 2 0.03696 1/29
BgRatio
55 1/9703
94 1/9703
100 1/9703
156 1/9703
216 1/9703
220 1/9703
221 1/9703
224 1/9703
229 1/9703
231 1/9703
Warning: replacing previous import 'lifecycle::last_warnings' by
'rlang::last_warnings' when loading 'hms'
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL
Warning: ggrepel: 8 unlabeled data points (too many overlaps). Consider
increasing max.overlaps
#number of genes in known annotations
print(length(known_annotations))
[1] 130
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 46
#significance threshold for TWAS
print(sig_thresh)
[1] 4.491
#number of ctwas genes
length(ctwas_genes)
[1] 12
#number of TWAS genes
length(twas_genes)
[1] 120
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
genename region_tag susie_pip mu2 PVE z num_intron
630 B3GAT1 11_84 0.8550 21.97 0.0001383 4.272 7
684 BDNF 11_19 0.9214 22.76 0.0001801 4.348 4
1532 CTC-487M23.8 5_67 0.8126 21.51 0.0001335 -4.125 2
3152 LAMA5 20_36 0.9075 24.09 0.0001723 -4.329 11
4439 PLCB2 15_14 0.8314 24.84 0.0001344 -4.470 6
6106 THAP8 19_25 0.8578 19.74 0.0001376 3.847 2
num_sqtl
630 10
684 4
1532 2
3152 14
4439 7
6106 2
#sensitivity / recall
print(sensitivity)
ctwas TWAS
0.02308 0.12308
#specificity
print(specificity)
ctwas TWAS
0.9987 0.9852
#precision / PPV
print(precision)
ctwas TWAS
0.2500 0.1333
sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)
Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] readxl_1.4.0 forcats_0.5.1 stringr_1.4.0 purrr_0.3.4
[5] readr_1.4.0 tidyr_1.1.3 tidyverse_1.3.1 tibble_3.1.7
[9] WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0 cowplot_1.1.1
[13] ggplot2_3.3.5 dplyr_1.0.7 reticulate_1.25 workflowr_1.7.0
loaded via a namespace (and not attached):
[1] fs_1.5.0 lubridate_1.7.10 doParallel_1.0.16 httr_1.4.2
[5] rprojroot_2.0.2 tools_4.1.0 backports_1.2.1 doRNG_1.8.2
[9] bslib_0.2.5.1 utf8_1.2.1 R6_2.5.0 vipor_0.4.5
[13] DBI_1.1.1 colorspace_2.0-2 withr_2.4.2 ggrastr_1.0.1
[17] tidyselect_1.1.1 processx_3.5.2 curl_4.3.2 compiler_4.1.0
[21] git2r_0.28.0 rvest_1.0.0 cli_3.0.0 Cairo_1.5-15
[25] xml2_1.3.2 labeling_0.4.2 sass_0.4.0 scales_1.1.1
[29] callr_3.7.0 systemfonts_1.0.4 apcluster_1.4.9 digest_0.6.27
[33] rmarkdown_2.9 svglite_2.0.0 pkgconfig_2.0.3 htmltools_0.5.1.1
[37] dbplyr_2.1.1 highr_0.9 rlang_1.0.2 rstudioapi_0.13
[41] jquerylib_0.1.4 farver_2.1.0 generics_0.1.0 jsonlite_1.7.2
[45] magrittr_2.0.1 Matrix_1.3-3 ggbeeswarm_0.6.0 Rcpp_1.0.7
[49] munsell_0.5.0 fansi_0.5.0 lifecycle_1.0.0 stringi_1.6.2
[53] whisker_0.4 yaml_2.2.1 plyr_1.8.6 grid_4.1.0
[57] ggrepel_0.9.1 parallel_4.1.0 promises_1.2.0.1 crayon_1.4.1
[61] lattice_0.20-44 haven_2.4.1 hms_1.1.0 knitr_1.33
[65] ps_1.6.0 pillar_1.7.0 igraph_1.2.6 rjson_0.2.20
[69] rngtools_1.5 reshape2_1.4.4 codetools_0.2-18 reprex_2.0.0
[73] glue_1.4.2 evaluate_0.14 getPass_0.2-2 modelr_0.1.8
[77] data.table_1.14.0 png_0.1-7 vctrs_0.3.8 httpuv_1.6.1
[81] foreach_1.5.1 cellranger_1.1.0 gtable_0.3.0 assertthat_0.2.1
[85] xfun_0.24 broom_0.7.8 later_1.2.0 iterators_1.0.13
[89] beeswarm_0.4.0 ellipsis_0.3.2 here_1.0.1