Last updated: 2022-04-19

Checks: 5 2

Knit directory: cTWAS_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ data
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R code/ctwas_config.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version ba919ab. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .ipynb_checkpoints/
    Ignored:    data/AF/

Untracked files:
    Untracked:  Rplot.png
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/AF_out/
    Untracked:  code/Autism_out/
    Untracked:  code/BMI_S_out/
    Untracked:  code/BMI_out/
    Untracked:  code/Glucose_out/
    Untracked:  code/LDL_S_out/
    Untracked:  code/SCZ_2014_EUR_out/
    Untracked:  code/SCZ_2018_out/
    Untracked:  code/SCZ_2020_Single_out/
    Untracked:  code/SCZ_2020_out/
    Untracked:  code/SCZ_S_out/
    Untracked:  code/SCZ_out/
    Untracked:  code/T2D_out/
    Untracked:  code/ctwas_config.R
    Untracked:  code/mapping.R
    Untracked:  code/out/
    Untracked:  code/process_scz_2018_snps.R
    Untracked:  code/run_AF_analysis.sbatch
    Untracked:  code/run_AF_analysis.sh
    Untracked:  code/run_AF_ctwas_rss_LDR.R
    Untracked:  code/run_Autism_analysis.sbatch
    Untracked:  code/run_Autism_analysis.sh
    Untracked:  code/run_Autism_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_analysis.sbatch
    Untracked:  code/run_BMI_analysis.sh
    Untracked:  code/run_BMI_analysis_S.sbatch
    Untracked:  code/run_BMI_analysis_S.sh
    Untracked:  code/run_BMI_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_ctwas_rss_LDR_S.R
    Untracked:  code/run_Glucose_analysis.sbatch
    Untracked:  code/run_Glucose_analysis.sh
    Untracked:  code/run_Glucose_ctwas_rss_LDR.R
    Untracked:  code/run_LDL_analysis_S.sbatch
    Untracked:  code/run_LDL_analysis_S.sh
    Untracked:  code/run_LDL_ctwas_rss_LDR_S.R
    Untracked:  code/run_SCZ_2014_EUR_analysis.sbatch
    Untracked:  code/run_SCZ_2014_EUR_analysis.sh
    Untracked:  code/run_SCZ_2014_EUR_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2018_analysis.sbatch
    Untracked:  code/run_SCZ_2018_analysis.sh
    Untracked:  code/run_SCZ_2018_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2020_Single_analysis.sbatch
    Untracked:  code/run_SCZ_2020_Single_analysis.sh
    Untracked:  code/run_SCZ_2020_Single_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2020_analysis.sbatch
    Untracked:  code/run_SCZ_2020_analysis.sh
    Untracked:  code/run_SCZ_2020_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_analysis.sbatch
    Untracked:  code/run_SCZ_analysis.sh
    Untracked:  code/run_SCZ_analysis_S.sbatch
    Untracked:  code/run_SCZ_analysis_S.sh
    Untracked:  code/run_SCZ_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_ctwas_rss_LDR_S.R
    Untracked:  code/run_T2D_analysis.sbatch
    Untracked:  code/run_T2D_analysis.sh
    Untracked:  code/run_T2D_ctwas_rss_LDR.R
    Untracked:  code/wflow_build.R
    Untracked:  code/wflow_build.sbatch
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/BMI/
    Untracked:  data/GO_Terms/
    Untracked:  data/PGC3_SCZ_wave3_public.v2.tsv
    Untracked:  data/SCZ/
    Untracked:  data/SCZ_2014_EUR/
    Untracked:  data/SCZ_2018/
    Untracked:  data/SCZ_2020/
    Untracked:  data/SCZ_2020_Single/
    Untracked:  data/SCZ_S/
    Untracked:  data/Supplementary Table 15 - MAGMA.xlsx
    Untracked:  data/Supplementary Table 20 - Prioritised Genes.xlsx
    Untracked:  data/T2D/
    Untracked:  data/UKBB/
    Untracked:  data/UKBB_SNPs_Info.text
    Untracked:  data/gene_OMIM.txt
    Untracked:  data/gene_pip_0.8.txt
    Untracked:  data/mashr_Heart_Atrial_Appendage.db
    Untracked:  data/mashr_sqtl/
    Untracked:  data/scz_2018.RDS
    Untracked:  data/summary_known_genes_annotations.xlsx
    Untracked:  data/untitled.txt
    Untracked:  top_genes_32.txt
    Untracked:  top_genes_37.txt
    Untracked:  top_genes_43.txt
    Untracked:  top_genes_81.txt

Unstaged changes:
    Modified:   analysis/SCZ_2018_Brain_Amygdala.Rmd
    Modified:   analysis/SCZ_2018_Brain_Anterior_cingulate_cortex_BA24.Rmd
    Modified:   analysis/SCZ_2018_Brain_Caudate_basal_ganglia.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cerebellar_Hemisphere.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cerebellum.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cortex.Rmd
    Modified:   analysis/SCZ_2018_Brain_Frontal_Cortex_BA9.Rmd
    Modified:   analysis/SCZ_2018_Brain_Hippocampus.Rmd
    Modified:   analysis/SCZ_2018_Brain_Hypothalamus.Rmd
    Modified:   analysis/SCZ_2018_Brain_Nucleus_accumbens_basal_ganglia.Rmd
    Modified:   analysis/SCZ_2018_Brain_Putamen_basal_ganglia.Rmd
    Modified:   analysis/SCZ_2018_Brain_Spinal_cord_cervical_c-1.Rmd
    Modified:   analysis/SCZ_2018_Brain_Substantia_nigra.Rmd
    Modified:   analysis/SCZ_Annotation_Analysis.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/SCZ_2018_Brain_Spinal_cord_cervical_c-1.Rmd) and HTML (docs/SCZ_2018_Brain_Spinal_cord_cervical_c-1.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 9ddc9c4 sq-96 2022-04-18 update
Rmd f6e7062 sq-96 2022-04-17 update
html f6e7062 sq-96 2022-04-17 update

Weight QC

#number of imputed weights
nrow(qclist_all)
[1] 9040
#number of imputed weights by chromosome
table(qclist_all$chr)

  1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20 
894 649 536 348 429 514 446 349 342 345 531 533 200 304 324 368 557 145 690 274 
 21  22 
 27 235 
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 6617
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.732

Check convergence of parameters

#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
     gene       snp 
0.0124907 0.0003133 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
 gene   snp 
15.39 10.05 
#report sample size
print(sample_size)
[1] 105318
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]    9040 6309950
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
  gene    snp 
0.0165 0.1886 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.0542 1.0708

Genes with highest PIPs

           genename region_tag susie_pip    mu2       PVE      z num_eqtl
10447        ZNF823      19_10    0.9824  37.28 0.0003477  6.143        1
12796 RP11-408A13.3       9_12    0.9224  23.54 0.0002061  4.536        1
11504    AC012074.2       2_15    0.9223  22.27 0.0001950  4.557        2
12471 RP11-247A12.7       9_66    0.9213  23.50 0.0002056  4.694        2
8557        MAP3K11      11_36    0.9091  32.66 0.0002820 -5.401        1
2890          SF3B1      2_117    0.8780  50.87 0.0004241  7.265        1
9840        TMEM222       1_19    0.8758  22.09 0.0001837  4.367        2
11457     HIST1H2BN       6_21    0.8598 106.35 0.0008682 13.396        1
5374          SYTL1       1_19    0.8536  22.00 0.0001783  4.274        2
11163        ZNF844      19_10    0.8510  23.96 0.0001936  4.487        1
299            VRK2       2_38    0.8164  40.02 0.0003103  4.693        2
3886         SPECC1      17_16    0.7927  26.23 0.0001974 -4.822        1
10032       SLC38A3       3_35    0.7482  45.64 0.0003243 -1.402        1
4312          TRPC4      13_14    0.7357  22.41 0.0001566 -4.518        1
1568       KIAA0391       14_9    0.7197  26.15 0.0001787 -4.897        2
2445            MDK      11_28    0.6937  48.75 0.0003211 -7.159        1
2823         LMAN2L       2_57    0.6853  24.21 0.0001575 -4.252        2
2173           TLE4       9_38    0.6819  21.78 0.0001410  4.279        1
4659         RCBTB1      13_21    0.6800  21.07 0.0001361 -3.996        1
459         SDCCAG8      1_128    0.6391  26.41 0.0001603 -4.660        2

Genes with largest effect sizes

       genename region_tag susie_pip    mu2       PVE       z num_eqtl
10760      APOM       6_26 1.688e-04 225.84 3.621e-07  11.590        1
10755   ABHD16A       6_26 1.387e-04 222.97 2.937e-07  11.526        1
11740       C4A       6_26 3.161e-05 216.08 6.486e-08  11.326        1
10158  HLA-DRB1       6_26 2.554e-05 177.63 4.307e-08   6.222        1
9135   HLA-DQB1       6_26 2.701e-07 173.12 4.440e-10   4.182        1
10137   ZKSCAN3       6_22 5.433e-02 170.18 8.780e-05  13.312        1
11576  HLA-DQA2       6_26 3.378e-07 169.00 5.421e-10  -4.388        1
11416  HLA-DQB2       6_26 3.378e-07 169.00 5.421e-10  -4.388        1
10732     PRRT1       6_26 5.758e-05 155.10 8.480e-08 -10.061        1
10729      RNF5       6_26 2.902e-05 146.18 4.028e-08   9.582        2
10726    NOTCH4       6_26 3.686e-03 135.32 4.735e-06   6.793        1
10728      AGER       6_26 4.522e-06 111.23 4.775e-09  -9.071        1
11457 HIST1H2BN       6_21 8.598e-01 106.35 8.682e-04  13.396        1
10730    AGPAT1       6_26 2.914e-07 103.42 2.862e-10  -5.190        1
10270   ZSCAN16       6_22 1.317e-02 102.08 1.276e-05 -10.284        1
9836     BTN3A2       6_20 1.890e-02  96.21 1.726e-05  10.739        2
9231  HIST1H2BC       6_20 2.817e-02  84.16 2.251e-05  -9.909        1
10753      MSH5       6_26 2.157e-05  80.01 1.639e-08   8.219        1
10989     DDAH2       6_26 1.771e-05  78.13 1.313e-08   8.149        1
10718   HLA-DMA       6_27 5.650e-02  73.21 3.927e-05  -8.951        2

Genes with highest PVE

           genename region_tag susie_pip    mu2       PVE      z num_eqtl
11457     HIST1H2BN       6_21    0.8598 106.35 0.0008682 13.396        1
2890          SF3B1      2_117    0.8780  50.87 0.0004241  7.265        1
10447        ZNF823      19_10    0.9824  37.28 0.0003477  6.143        1
10032       SLC38A3       3_35    0.7482  45.64 0.0003243 -1.402        1
2445            MDK      11_28    0.6937  48.75 0.0003211 -7.159        1
299            VRK2       2_38    0.8164  40.02 0.0003103  4.693        2
8557        MAP3K11      11_36    0.9091  32.66 0.0002820 -5.401        1
38             RBM6       3_35    0.4540  54.10 0.0002332  3.221        1
8068         INO80E      16_24    0.4941  46.81 0.0002196  6.852        1
7404          LETM2       8_34    0.5919  38.65 0.0002172  6.067        1
12796 RP11-408A13.3       9_12    0.9224  23.54 0.0002061  4.536        1
12471 RP11-247A12.7       9_66    0.9213  23.50 0.0002056  4.694        2
11046         AS3MT      10_66    0.4854  44.38 0.0002045  8.051        1
3886         SPECC1      17_16    0.7927  26.23 0.0001974 -4.822        1
11504    AC012074.2       2_15    0.9223  22.27 0.0001950  4.557        2
11163        ZNF844      19_10    0.8510  23.96 0.0001936  4.487        1
9840        TMEM222       1_19    0.8758  22.09 0.0001837  4.367        2
1568       KIAA0391       14_9    0.7197  26.15 0.0001787 -4.897        2
5374          SYTL1       1_19    0.8536  22.00 0.0001783  4.274        2
5186          FURIN      15_42    0.5063  35.59 0.0001711 -5.772        1

Genes with largest z scores

       genename region_tag susie_pip    mu2       PVE       z num_eqtl
11457 HIST1H2BN       6_21 8.598e-01 106.35 8.682e-04  13.396        1
10137   ZKSCAN3       6_22 5.433e-02 170.18 8.780e-05  13.312        1
10760      APOM       6_26 1.688e-04 225.84 3.621e-07  11.590        1
10755   ABHD16A       6_26 1.387e-04 222.97 2.937e-07  11.526        1
11740       C4A       6_26 3.161e-05 216.08 6.486e-08  11.326        1
9594   HIST1H1B       6_21 1.727e-02  62.76 1.029e-05 -10.766        1
9836     BTN3A2       6_20 1.890e-02  96.21 1.726e-05  10.739        2
10270   ZSCAN16       6_22 1.317e-02 102.08 1.276e-05 -10.284        1
10732     PRRT1       6_26 5.758e-05 155.10 8.480e-08 -10.061        1
9231  HIST1H2BC       6_20 2.817e-02  84.16 2.251e-05  -9.909        1
10729      RNF5       6_26 2.902e-05 146.18 4.028e-08   9.582        2
12858 HIST1H2BO       6_21 1.571e-02  49.84 7.433e-06  -9.187        1
10728      AGER       6_26 4.522e-06 111.23 4.775e-09  -9.071        1
10718   HLA-DMA       6_27 5.650e-02  73.21 3.927e-05  -8.951        2
2623     TRIM38       6_20 2.040e-02  67.24 1.302e-05  -8.903        2
10753      MSH5       6_26 2.157e-05  80.01 1.639e-08   8.219        1
10989     DDAH2       6_26 1.771e-05  78.13 1.313e-08   8.149        1
11046     AS3MT      10_66 4.854e-01  44.38 2.045e-04   8.051        1
7005      MAIP1      2_118 3.199e-01  46.24 1.404e-04   7.980        1
7004       TYW5      2_118 3.199e-01  46.24 1.404e-04  -7.980        1

Comparing z scores and PIPs

[1] 0.01316

GO enrichment analysis for genes with PIP>0.5

#number of genes for gene set enrichment
length(genes)
[1] 37
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"

                                                                        Term
1                    regulation of leukocyte cell-cell adhesion (GO:1903037)
2 regulation of leukocyte adhesion to vascular endothelial cell (GO:1904994)
  Overlap Adjusted.P.value    Genes
1    2/12          0.04834 FUT9;MDK
2    2/13          0.04834 FUT9;MDK
[1] "GO_Cellular_Component_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)

DisGeNET enrichment analysis for genes with PIP>0.5

                                               Description     FDR Ratio
78       Reticular Dystrophy Of Retinal Pigment Epithelium 0.02511  1/14
80                                 SENIOR-LOKEN SYNDROME 7 0.02511  1/14
84                                BARDET-BIEDL SYNDROME 16 0.02511  1/14
85              MENTAL RETARDATION, AUTOSOMAL RECESSIVE 52 0.02511  1/14
87 RETINAL DYSTROPHY WITH OR WITHOUT EXTRAOCULAR ANOMALIES 0.02511  1/14
69              Refractory anemia with ringed sideroblasts 0.04182  1/14
6                               Bronchopulmonary Dysplasia 0.04472  1/14
32                                           Schizophrenia 0.04472  5/14
37                                   Exudative retinopathy 0.04472  1/14
50                    Familial Exudative Vitreoretinopathy 0.04472  1/14
    BgRatio
78   1/9703
80   1/9703
84   1/9703
85   1/9703
87   1/9703
69   2/9703
6    3/9703
32 883/9703
37   4/9703
50   5/9703

WebGestalt enrichment analysis for genes with PIP>0.5

Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL

PIP Manhattan Plot

Warning: ggrepel: 1 unlabeled data points (too many overlaps). Consider
increasing max.overlaps

Sensitivity, specificity and precision for silver standard genes

#number of genes in known annotations
print(length(known_annotations))
[1] 130
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 49
#significance threshold for TWAS
print(sig_thresh)
[1] 4.544
#number of ctwas genes
length(ctwas_genes)
[1] 11
#number of TWAS genes
length(twas_genes)
[1] 119
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
           genename region_tag susie_pip   mu2       PVE     z num_eqtl
5374          SYTL1       1_19    0.8536 22.00 0.0001783 4.274        2
9840        TMEM222       1_19    0.8758 22.09 0.0001837 4.367        2
12796 RP11-408A13.3       9_12    0.9224 23.54 0.0002061 4.536        1
11163        ZNF844      19_10    0.8510 23.96 0.0001936 4.487        1
#sensitivity / recall
print(sensitivity)
  ctwas    TWAS 
0.01538 0.09231 
#specificity
print(specificity)
 ctwas   TWAS 
0.9990 0.9881 
#precision / PPV
print(precision)
 ctwas   TWAS 
0.1818 0.1008 

cTWAS is more precise than TWAS in distinguishing silver standard and bystander genes

#number of genes in known annotations (with imputed expression)
print(length(known_annotations))
[1] 49
#number of bystander genes (with imputed expression)
print(length(unrelated_genes))
[1] 522
#subset results to genes in known annotations or bystanders
ctwas_gene_res_subset <- ctwas_gene_res[ctwas_gene_res$genename %in% c(known_annotations, unrelated_genes),]

#assign ctwas and TWAS genes
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

#significance threshold for TWAS
print(sig_thresh)
[1] 4.544
#number of ctwas genes (in known annotations or bystanders)
length(ctwas_genes)
[1] 4
#number of TWAS genes (in known annotations or bystanders)
length(twas_genes)
[1] 36
#sensitivity / recall
sensitivity
  ctwas    TWAS 
0.04082 0.24490 
#specificity / (1 - False Positive Rate)
specificity
 ctwas   TWAS 
0.9962 0.9540 
#precision / PPV / (1 - False Discovery Rate)
precision
 ctwas   TWAS 
0.5000 0.3333 

pip_range <- (0:1000)/1000
sensitivity <- rep(NA, length(pip_range))
specificity <- rep(NA, length(pip_range))

for (index in 1:length(pip_range)){
  pip <- pip_range[index]
  ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>=pip]
  sensitivity[index] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
}

plot(1-specificity, sensitivity, type="l", xlim=c(0,1), ylim=c(0,1), main="", xlab="1 - Specificity", ylab="Sensitivity")
title(expression("ROC Curve for cTWAS (black) and TWAS (" * phantom("red") * ")"))
title(expression(phantom("ROC Curve for cTWAS (black) and TWAS (") * "red" * phantom(")")), col.main="red")

sig_thresh_range <- seq(from=0, to=max(abs(ctwas_gene_res_subset$z)), length.out=length(pip_range))

for (index in 1:length(sig_thresh_range)){
  sig_thresh_plot <- sig_thresh_range[index]
  twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>=sig_thresh_plot]
  sensitivity[index] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
}

lines(1-specificity, sensitivity, xlim=c(0,1), ylim=c(0,1), col="red", lty=1)

abline(a=0,b=1,lty=3)

#add previously computed points from the analysis
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

points(1-specificity_plot["ctwas"], sensitivity_plot["ctwas"], pch=21, bg="black")
points(1-specificity_plot["TWAS"], sensitivity_plot["TWAS"], pch=21, bg="red")

Undetected silver standard genes have low TWAS z-scores or stronger signal from nearby variants

#table of outcomes for silver standard genes
-sort(-table(silver_standard_case))
silver_standard_case
          Not Imputed Insignificant z-score         Nearby SNP(s) 
                   81                    37                    10 
 Detected (PIP > 0.8) 
                    2 
#show inconclusive genes
silver_standard_case[silver_standard_case=="Inconclusive"]
named character(0)


sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] GenomicRanges_1.36.1 GenomeInfoDb_1.20.0  IRanges_2.18.1      
 [4] S4Vectors_0.22.1     BiocGenerics_0.30.0  biomaRt_2.40.1      
 [7] readxl_1.3.1         forcats_0.5.1        stringr_1.4.0       
[10] dplyr_1.0.7          purrr_0.3.4          readr_2.1.1         
[13] tidyr_1.1.4          tidyverse_1.3.1      tibble_3.1.6        
[16] WebGestaltR_0.4.4    disgenet2r_0.99.2    enrichR_3.0         
[19] cowplot_1.1.1        ggplot2_3.3.5        workflowr_1.7.0     

loaded via a namespace (and not attached):
  [1] ggbeeswarm_0.6.0       colorspace_2.0-2       rjson_0.2.20          
  [4] ellipsis_0.3.2         rprojroot_2.0.2        XVector_0.24.0        
  [7] fs_1.5.2               rstudioapi_0.13        farver_2.1.0          
 [10] ggrepel_0.9.1          bit64_4.0.5            AnnotationDbi_1.46.0  
 [13] fansi_1.0.2            lubridate_1.8.0        xml2_1.3.3            
 [16] codetools_0.2-16       doParallel_1.0.17      cachem_1.0.6          
 [19] knitr_1.36             jsonlite_1.7.2         apcluster_1.4.8       
 [22] Cairo_1.5-12.2         broom_0.7.10           dbplyr_2.1.1          
 [25] compiler_3.6.1         httr_1.4.2             backports_1.4.1       
 [28] assertthat_0.2.1       Matrix_1.2-18          fastmap_1.1.0         
 [31] cli_3.1.0              later_0.8.0            prettyunits_1.1.1     
 [34] htmltools_0.5.2        tools_3.6.1            igraph_1.2.10         
 [37] GenomeInfoDbData_1.2.1 gtable_0.3.0           glue_1.6.2            
 [40] reshape2_1.4.4         doRNG_1.8.2            Rcpp_1.0.8            
 [43] Biobase_2.44.0         cellranger_1.1.0       jquerylib_0.1.4       
 [46] vctrs_0.3.8            svglite_1.2.2          iterators_1.0.14      
 [49] xfun_0.29              ps_1.6.0               rvest_1.0.2           
 [52] lifecycle_1.0.1        rngtools_1.5.2         XML_3.99-0.3          
 [55] zlibbioc_1.30.0        getPass_0.2-2          scales_1.1.1          
 [58] vroom_1.5.7            hms_1.1.1              promises_1.0.1        
 [61] yaml_2.2.1             curl_4.3.2             memoise_2.0.1         
 [64] ggrastr_1.0.1          gdtools_0.1.9          stringi_1.7.6         
 [67] RSQLite_2.2.8          highr_0.9              foreach_1.5.2         
 [70] rlang_1.0.1            pkgconfig_2.0.3        bitops_1.0-7          
 [73] evaluate_0.14          lattice_0.20-38        labeling_0.4.2        
 [76] bit_4.0.4              processx_3.5.2         tidyselect_1.1.1      
 [79] plyr_1.8.6             magrittr_2.0.2         R6_2.5.1              
 [82] generics_0.1.1         DBI_1.1.2              pillar_1.6.4          
 [85] haven_2.4.3            whisker_0.3-2          withr_2.4.3           
 [88] RCurl_1.98-1.5         modelr_0.1.8           crayon_1.5.0          
 [91] utf8_1.2.2             tzdb_0.2.0             rmarkdown_2.11        
 [94] progress_1.2.2         grid_3.6.1             data.table_1.14.2     
 [97] blob_1.2.2             callr_3.7.0            git2r_0.26.1          
[100] reprex_2.0.1           digest_0.6.29          httpuv_1.5.1          
[103] munsell_0.5.0          beeswarm_0.2.3         vipor_0.4.5