Last updated: 2022-04-19
Checks: 5 2
Knit directory: cTWAS_analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish
to commit the R Markdown file and build the HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20211220)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.
absolute | relative |
---|---|
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ | data |
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R | code/ctwas_config.R |
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version ba919ab. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .ipynb_checkpoints/
Ignored: data/AF/
Untracked files:
Untracked: Rplot.png
Untracked: analysis/.ipynb_checkpoints/
Untracked: code/.ipynb_checkpoints/
Untracked: code/AF_out/
Untracked: code/Autism_out/
Untracked: code/BMI_S_out/
Untracked: code/BMI_out/
Untracked: code/Glucose_out/
Untracked: code/LDL_S_out/
Untracked: code/SCZ_2014_EUR_out/
Untracked: code/SCZ_2018_out/
Untracked: code/SCZ_2020_Single_out/
Untracked: code/SCZ_2020_out/
Untracked: code/SCZ_S_out/
Untracked: code/SCZ_out/
Untracked: code/T2D_out/
Untracked: code/ctwas_config.R
Untracked: code/mapping.R
Untracked: code/out/
Untracked: code/process_scz_2018_snps.R
Untracked: code/run_AF_analysis.sbatch
Untracked: code/run_AF_analysis.sh
Untracked: code/run_AF_ctwas_rss_LDR.R
Untracked: code/run_Autism_analysis.sbatch
Untracked: code/run_Autism_analysis.sh
Untracked: code/run_Autism_ctwas_rss_LDR.R
Untracked: code/run_BMI_analysis.sbatch
Untracked: code/run_BMI_analysis.sh
Untracked: code/run_BMI_analysis_S.sbatch
Untracked: code/run_BMI_analysis_S.sh
Untracked: code/run_BMI_ctwas_rss_LDR.R
Untracked: code/run_BMI_ctwas_rss_LDR_S.R
Untracked: code/run_Glucose_analysis.sbatch
Untracked: code/run_Glucose_analysis.sh
Untracked: code/run_Glucose_ctwas_rss_LDR.R
Untracked: code/run_LDL_analysis_S.sbatch
Untracked: code/run_LDL_analysis_S.sh
Untracked: code/run_LDL_ctwas_rss_LDR_S.R
Untracked: code/run_SCZ_2014_EUR_analysis.sbatch
Untracked: code/run_SCZ_2014_EUR_analysis.sh
Untracked: code/run_SCZ_2014_EUR_ctwas_rss_LDR.R
Untracked: code/run_SCZ_2018_analysis.sbatch
Untracked: code/run_SCZ_2018_analysis.sh
Untracked: code/run_SCZ_2018_ctwas_rss_LDR.R
Untracked: code/run_SCZ_2020_Single_analysis.sbatch
Untracked: code/run_SCZ_2020_Single_analysis.sh
Untracked: code/run_SCZ_2020_Single_ctwas_rss_LDR.R
Untracked: code/run_SCZ_2020_analysis.sbatch
Untracked: code/run_SCZ_2020_analysis.sh
Untracked: code/run_SCZ_2020_ctwas_rss_LDR.R
Untracked: code/run_SCZ_analysis.sbatch
Untracked: code/run_SCZ_analysis.sh
Untracked: code/run_SCZ_analysis_S.sbatch
Untracked: code/run_SCZ_analysis_S.sh
Untracked: code/run_SCZ_ctwas_rss_LDR.R
Untracked: code/run_SCZ_ctwas_rss_LDR_S.R
Untracked: code/run_T2D_analysis.sbatch
Untracked: code/run_T2D_analysis.sh
Untracked: code/run_T2D_ctwas_rss_LDR.R
Untracked: code/wflow_build.R
Untracked: code/wflow_build.sbatch
Untracked: data/.ipynb_checkpoints/
Untracked: data/BMI/
Untracked: data/GO_Terms/
Untracked: data/PGC3_SCZ_wave3_public.v2.tsv
Untracked: data/SCZ/
Untracked: data/SCZ_2014_EUR/
Untracked: data/SCZ_2018/
Untracked: data/SCZ_2020/
Untracked: data/SCZ_2020_Single/
Untracked: data/SCZ_S/
Untracked: data/Supplementary Table 15 - MAGMA.xlsx
Untracked: data/Supplementary Table 20 - Prioritised Genes.xlsx
Untracked: data/T2D/
Untracked: data/UKBB/
Untracked: data/UKBB_SNPs_Info.text
Untracked: data/gene_OMIM.txt
Untracked: data/gene_pip_0.8.txt
Untracked: data/mashr_Heart_Atrial_Appendage.db
Untracked: data/mashr_sqtl/
Untracked: data/scz_2018.RDS
Untracked: data/summary_known_genes_annotations.xlsx
Untracked: data/untitled.txt
Untracked: top_genes_32.txt
Untracked: top_genes_37.txt
Untracked: top_genes_43.txt
Untracked: top_genes_81.txt
Unstaged changes:
Modified: analysis/SCZ_2018_Brain_Amygdala.Rmd
Modified: analysis/SCZ_2018_Brain_Anterior_cingulate_cortex_BA24.Rmd
Modified: analysis/SCZ_2018_Brain_Caudate_basal_ganglia.Rmd
Modified: analysis/SCZ_2018_Brain_Cerebellar_Hemisphere.Rmd
Modified: analysis/SCZ_2018_Brain_Cerebellum.Rmd
Modified: analysis/SCZ_2018_Brain_Cortex.Rmd
Modified: analysis/SCZ_2018_Brain_Frontal_Cortex_BA9.Rmd
Modified: analysis/SCZ_2018_Brain_Hippocampus.Rmd
Modified: analysis/SCZ_2018_Brain_Hypothalamus.Rmd
Modified: analysis/SCZ_2018_Brain_Nucleus_accumbens_basal_ganglia.Rmd
Modified: analysis/SCZ_2018_Brain_Putamen_basal_ganglia.Rmd
Modified: analysis/SCZ_2018_Brain_Spinal_cord_cervical_c-1.Rmd
Modified: analysis/SCZ_2018_Brain_Substantia_nigra.Rmd
Modified: analysis/SCZ_Annotation_Analysis.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/SCZ_2018_Brain_Spinal_cord_cervical_c-1.Rmd
) and HTML (docs/SCZ_2018_Brain_Spinal_cord_cervical_c-1.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 9ddc9c4 | sq-96 | 2022-04-18 | update |
Rmd | f6e7062 | sq-96 | 2022-04-17 | update |
html | f6e7062 | sq-96 | 2022-04-17 | update |
#number of imputed weights
nrow(qclist_all)
[1] 9040
#number of imputed weights by chromosome
table(qclist_all$chr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
894 649 536 348 429 514 446 349 342 345 531 533 200 304 324 368 557 145 690 274
21 22
27 235
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 6617
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.732
#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
gene snp
0.0124907 0.0003133
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
gene snp
15.39 10.05
#report sample size
print(sample_size)
[1] 105318
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1] 9040 6309950
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
gene snp
0.0165 0.1886
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.0542 1.0708
genename region_tag susie_pip mu2 PVE z num_eqtl
10447 ZNF823 19_10 0.9824 37.28 0.0003477 6.143 1
12796 RP11-408A13.3 9_12 0.9224 23.54 0.0002061 4.536 1
11504 AC012074.2 2_15 0.9223 22.27 0.0001950 4.557 2
12471 RP11-247A12.7 9_66 0.9213 23.50 0.0002056 4.694 2
8557 MAP3K11 11_36 0.9091 32.66 0.0002820 -5.401 1
2890 SF3B1 2_117 0.8780 50.87 0.0004241 7.265 1
9840 TMEM222 1_19 0.8758 22.09 0.0001837 4.367 2
11457 HIST1H2BN 6_21 0.8598 106.35 0.0008682 13.396 1
5374 SYTL1 1_19 0.8536 22.00 0.0001783 4.274 2
11163 ZNF844 19_10 0.8510 23.96 0.0001936 4.487 1
299 VRK2 2_38 0.8164 40.02 0.0003103 4.693 2
3886 SPECC1 17_16 0.7927 26.23 0.0001974 -4.822 1
10032 SLC38A3 3_35 0.7482 45.64 0.0003243 -1.402 1
4312 TRPC4 13_14 0.7357 22.41 0.0001566 -4.518 1
1568 KIAA0391 14_9 0.7197 26.15 0.0001787 -4.897 2
2445 MDK 11_28 0.6937 48.75 0.0003211 -7.159 1
2823 LMAN2L 2_57 0.6853 24.21 0.0001575 -4.252 2
2173 TLE4 9_38 0.6819 21.78 0.0001410 4.279 1
4659 RCBTB1 13_21 0.6800 21.07 0.0001361 -3.996 1
459 SDCCAG8 1_128 0.6391 26.41 0.0001603 -4.660 2
genename region_tag susie_pip mu2 PVE z num_eqtl
10760 APOM 6_26 1.688e-04 225.84 3.621e-07 11.590 1
10755 ABHD16A 6_26 1.387e-04 222.97 2.937e-07 11.526 1
11740 C4A 6_26 3.161e-05 216.08 6.486e-08 11.326 1
10158 HLA-DRB1 6_26 2.554e-05 177.63 4.307e-08 6.222 1
9135 HLA-DQB1 6_26 2.701e-07 173.12 4.440e-10 4.182 1
10137 ZKSCAN3 6_22 5.433e-02 170.18 8.780e-05 13.312 1
11576 HLA-DQA2 6_26 3.378e-07 169.00 5.421e-10 -4.388 1
11416 HLA-DQB2 6_26 3.378e-07 169.00 5.421e-10 -4.388 1
10732 PRRT1 6_26 5.758e-05 155.10 8.480e-08 -10.061 1
10729 RNF5 6_26 2.902e-05 146.18 4.028e-08 9.582 2
10726 NOTCH4 6_26 3.686e-03 135.32 4.735e-06 6.793 1
10728 AGER 6_26 4.522e-06 111.23 4.775e-09 -9.071 1
11457 HIST1H2BN 6_21 8.598e-01 106.35 8.682e-04 13.396 1
10730 AGPAT1 6_26 2.914e-07 103.42 2.862e-10 -5.190 1
10270 ZSCAN16 6_22 1.317e-02 102.08 1.276e-05 -10.284 1
9836 BTN3A2 6_20 1.890e-02 96.21 1.726e-05 10.739 2
9231 HIST1H2BC 6_20 2.817e-02 84.16 2.251e-05 -9.909 1
10753 MSH5 6_26 2.157e-05 80.01 1.639e-08 8.219 1
10989 DDAH2 6_26 1.771e-05 78.13 1.313e-08 8.149 1
10718 HLA-DMA 6_27 5.650e-02 73.21 3.927e-05 -8.951 2
genename region_tag susie_pip mu2 PVE z num_eqtl
11457 HIST1H2BN 6_21 0.8598 106.35 0.0008682 13.396 1
2890 SF3B1 2_117 0.8780 50.87 0.0004241 7.265 1
10447 ZNF823 19_10 0.9824 37.28 0.0003477 6.143 1
10032 SLC38A3 3_35 0.7482 45.64 0.0003243 -1.402 1
2445 MDK 11_28 0.6937 48.75 0.0003211 -7.159 1
299 VRK2 2_38 0.8164 40.02 0.0003103 4.693 2
8557 MAP3K11 11_36 0.9091 32.66 0.0002820 -5.401 1
38 RBM6 3_35 0.4540 54.10 0.0002332 3.221 1
8068 INO80E 16_24 0.4941 46.81 0.0002196 6.852 1
7404 LETM2 8_34 0.5919 38.65 0.0002172 6.067 1
12796 RP11-408A13.3 9_12 0.9224 23.54 0.0002061 4.536 1
12471 RP11-247A12.7 9_66 0.9213 23.50 0.0002056 4.694 2
11046 AS3MT 10_66 0.4854 44.38 0.0002045 8.051 1
3886 SPECC1 17_16 0.7927 26.23 0.0001974 -4.822 1
11504 AC012074.2 2_15 0.9223 22.27 0.0001950 4.557 2
11163 ZNF844 19_10 0.8510 23.96 0.0001936 4.487 1
9840 TMEM222 1_19 0.8758 22.09 0.0001837 4.367 2
1568 KIAA0391 14_9 0.7197 26.15 0.0001787 -4.897 2
5374 SYTL1 1_19 0.8536 22.00 0.0001783 4.274 2
5186 FURIN 15_42 0.5063 35.59 0.0001711 -5.772 1
genename region_tag susie_pip mu2 PVE z num_eqtl
11457 HIST1H2BN 6_21 8.598e-01 106.35 8.682e-04 13.396 1
10137 ZKSCAN3 6_22 5.433e-02 170.18 8.780e-05 13.312 1
10760 APOM 6_26 1.688e-04 225.84 3.621e-07 11.590 1
10755 ABHD16A 6_26 1.387e-04 222.97 2.937e-07 11.526 1
11740 C4A 6_26 3.161e-05 216.08 6.486e-08 11.326 1
9594 HIST1H1B 6_21 1.727e-02 62.76 1.029e-05 -10.766 1
9836 BTN3A2 6_20 1.890e-02 96.21 1.726e-05 10.739 2
10270 ZSCAN16 6_22 1.317e-02 102.08 1.276e-05 -10.284 1
10732 PRRT1 6_26 5.758e-05 155.10 8.480e-08 -10.061 1
9231 HIST1H2BC 6_20 2.817e-02 84.16 2.251e-05 -9.909 1
10729 RNF5 6_26 2.902e-05 146.18 4.028e-08 9.582 2
12858 HIST1H2BO 6_21 1.571e-02 49.84 7.433e-06 -9.187 1
10728 AGER 6_26 4.522e-06 111.23 4.775e-09 -9.071 1
10718 HLA-DMA 6_27 5.650e-02 73.21 3.927e-05 -8.951 2
2623 TRIM38 6_20 2.040e-02 67.24 1.302e-05 -8.903 2
10753 MSH5 6_26 2.157e-05 80.01 1.639e-08 8.219 1
10989 DDAH2 6_26 1.771e-05 78.13 1.313e-08 8.149 1
11046 AS3MT 10_66 4.854e-01 44.38 2.045e-04 8.051 1
7005 MAIP1 2_118 3.199e-01 46.24 1.404e-04 7.980 1
7004 TYW5 2_118 3.199e-01 46.24 1.404e-04 -7.980 1
[1] 0.01316
#number of genes for gene set enrichment
length(genes)
[1] 37
Uploading data to Enrichr... Done.
Querying GO_Biological_Process_2021... Done.
Querying GO_Cellular_Component_2021... Done.
Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"
Term
1 regulation of leukocyte cell-cell adhesion (GO:1903037)
2 regulation of leukocyte adhesion to vascular endothelial cell (GO:1904994)
Overlap Adjusted.P.value Genes
1 2/12 0.04834 FUT9;MDK
2 2/13 0.04834 FUT9;MDK
[1] "GO_Cellular_Component_2021"
[1] Term Overlap Adjusted.P.value Genes
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"
[1] Term Overlap Adjusted.P.value Genes
<0 rows> (or 0-length row.names)
Description FDR Ratio
78 Reticular Dystrophy Of Retinal Pigment Epithelium 0.02511 1/14
80 SENIOR-LOKEN SYNDROME 7 0.02511 1/14
84 BARDET-BIEDL SYNDROME 16 0.02511 1/14
85 MENTAL RETARDATION, AUTOSOMAL RECESSIVE 52 0.02511 1/14
87 RETINAL DYSTROPHY WITH OR WITHOUT EXTRAOCULAR ANOMALIES 0.02511 1/14
69 Refractory anemia with ringed sideroblasts 0.04182 1/14
6 Bronchopulmonary Dysplasia 0.04472 1/14
32 Schizophrenia 0.04472 5/14
37 Exudative retinopathy 0.04472 1/14
50 Familial Exudative Vitreoretinopathy 0.04472 1/14
BgRatio
78 1/9703
80 1/9703
84 1/9703
85 1/9703
87 1/9703
69 2/9703
6 3/9703
32 883/9703
37 4/9703
50 5/9703
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL
Warning: ggrepel: 1 unlabeled data points (too many overlaps). Consider
increasing max.overlaps
#number of genes in known annotations
print(length(known_annotations))
[1] 130
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 49
#significance threshold for TWAS
print(sig_thresh)
[1] 4.544
#number of ctwas genes
length(ctwas_genes)
[1] 11
#number of TWAS genes
length(twas_genes)
[1] 119
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
genename region_tag susie_pip mu2 PVE z num_eqtl
5374 SYTL1 1_19 0.8536 22.00 0.0001783 4.274 2
9840 TMEM222 1_19 0.8758 22.09 0.0001837 4.367 2
12796 RP11-408A13.3 9_12 0.9224 23.54 0.0002061 4.536 1
11163 ZNF844 19_10 0.8510 23.96 0.0001936 4.487 1
#sensitivity / recall
print(sensitivity)
ctwas TWAS
0.01538 0.09231
#specificity
print(specificity)
ctwas TWAS
0.9990 0.9881
#precision / PPV
print(precision)
ctwas TWAS
0.1818 0.1008
#number of genes in known annotations (with imputed expression)
print(length(known_annotations))
[1] 49
#number of bystander genes (with imputed expression)
print(length(unrelated_genes))
[1] 522
#subset results to genes in known annotations or bystanders
ctwas_gene_res_subset <- ctwas_gene_res[ctwas_gene_res$genename %in% c(known_annotations, unrelated_genes),]
#assign ctwas and TWAS genes
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]
#significance threshold for TWAS
print(sig_thresh)
[1] 4.544
#number of ctwas genes (in known annotations or bystanders)
length(ctwas_genes)
[1] 4
#number of TWAS genes (in known annotations or bystanders)
length(twas_genes)
[1] 36
#sensitivity / recall
sensitivity
ctwas TWAS
0.04082 0.24490
#specificity / (1 - False Positive Rate)
specificity
ctwas TWAS
0.9962 0.9540
#precision / PPV / (1 - False Discovery Rate)
precision
ctwas TWAS
0.5000 0.3333
pip_range <- (0:1000)/1000
sensitivity <- rep(NA, length(pip_range))
specificity <- rep(NA, length(pip_range))
for (index in 1:length(pip_range)){
pip <- pip_range[index]
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>=pip]
sensitivity[index] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
specificity[index] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
}
plot(1-specificity, sensitivity, type="l", xlim=c(0,1), ylim=c(0,1), main="", xlab="1 - Specificity", ylab="Sensitivity")
title(expression("ROC Curve for cTWAS (black) and TWAS (" * phantom("red") * ")"))
title(expression(phantom("ROC Curve for cTWAS (black) and TWAS (") * "red" * phantom(")")), col.main="red")
sig_thresh_range <- seq(from=0, to=max(abs(ctwas_gene_res_subset$z)), length.out=length(pip_range))
for (index in 1:length(sig_thresh_range)){
sig_thresh_plot <- sig_thresh_range[index]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>=sig_thresh_plot]
sensitivity[index] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
specificity[index] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
}
lines(1-specificity, sensitivity, xlim=c(0,1), ylim=c(0,1), col="red", lty=1)
abline(a=0,b=1,lty=3)
#add previously computed points from the analysis
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]
points(1-specificity_plot["ctwas"], sensitivity_plot["ctwas"], pch=21, bg="black")
points(1-specificity_plot["TWAS"], sensitivity_plot["TWAS"], pch=21, bg="red")
#table of outcomes for silver standard genes
-sort(-table(silver_standard_case))
silver_standard_case
Not Imputed Insignificant z-score Nearby SNP(s)
81 37 10
Detected (PIP > 0.8)
2
#show inconclusive genes
silver_standard_case[silver_standard_case=="Inconclusive"]
named character(0)
sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)
Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] parallel stats4 stats graphics grDevices utils datasets
[8] methods base
other attached packages:
[1] GenomicRanges_1.36.1 GenomeInfoDb_1.20.0 IRanges_2.18.1
[4] S4Vectors_0.22.1 BiocGenerics_0.30.0 biomaRt_2.40.1
[7] readxl_1.3.1 forcats_0.5.1 stringr_1.4.0
[10] dplyr_1.0.7 purrr_0.3.4 readr_2.1.1
[13] tidyr_1.1.4 tidyverse_1.3.1 tibble_3.1.6
[16] WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0
[19] cowplot_1.1.1 ggplot2_3.3.5 workflowr_1.7.0
loaded via a namespace (and not attached):
[1] ggbeeswarm_0.6.0 colorspace_2.0-2 rjson_0.2.20
[4] ellipsis_0.3.2 rprojroot_2.0.2 XVector_0.24.0
[7] fs_1.5.2 rstudioapi_0.13 farver_2.1.0
[10] ggrepel_0.9.1 bit64_4.0.5 AnnotationDbi_1.46.0
[13] fansi_1.0.2 lubridate_1.8.0 xml2_1.3.3
[16] codetools_0.2-16 doParallel_1.0.17 cachem_1.0.6
[19] knitr_1.36 jsonlite_1.7.2 apcluster_1.4.8
[22] Cairo_1.5-12.2 broom_0.7.10 dbplyr_2.1.1
[25] compiler_3.6.1 httr_1.4.2 backports_1.4.1
[28] assertthat_0.2.1 Matrix_1.2-18 fastmap_1.1.0
[31] cli_3.1.0 later_0.8.0 prettyunits_1.1.1
[34] htmltools_0.5.2 tools_3.6.1 igraph_1.2.10
[37] GenomeInfoDbData_1.2.1 gtable_0.3.0 glue_1.6.2
[40] reshape2_1.4.4 doRNG_1.8.2 Rcpp_1.0.8
[43] Biobase_2.44.0 cellranger_1.1.0 jquerylib_0.1.4
[46] vctrs_0.3.8 svglite_1.2.2 iterators_1.0.14
[49] xfun_0.29 ps_1.6.0 rvest_1.0.2
[52] lifecycle_1.0.1 rngtools_1.5.2 XML_3.99-0.3
[55] zlibbioc_1.30.0 getPass_0.2-2 scales_1.1.1
[58] vroom_1.5.7 hms_1.1.1 promises_1.0.1
[61] yaml_2.2.1 curl_4.3.2 memoise_2.0.1
[64] ggrastr_1.0.1 gdtools_0.1.9 stringi_1.7.6
[67] RSQLite_2.2.8 highr_0.9 foreach_1.5.2
[70] rlang_1.0.1 pkgconfig_2.0.3 bitops_1.0-7
[73] evaluate_0.14 lattice_0.20-38 labeling_0.4.2
[76] bit_4.0.4 processx_3.5.2 tidyselect_1.1.1
[79] plyr_1.8.6 magrittr_2.0.2 R6_2.5.1
[82] generics_0.1.1 DBI_1.1.2 pillar_1.6.4
[85] haven_2.4.3 whisker_0.3-2 withr_2.4.3
[88] RCurl_1.98-1.5 modelr_0.1.8 crayon_1.5.0
[91] utf8_1.2.2 tzdb_0.2.0 rmarkdown_2.11
[94] progress_1.2.2 grid_3.6.1 data.table_1.14.2
[97] blob_1.2.2 callr_3.7.0 git2r_0.26.1
[100] reprex_2.0.1 digest_0.6.29 httpuv_1.5.1
[103] munsell_0.5.0 beeswarm_0.2.3 vipor_0.4.5