Last updated: 2022-05-19

Checks: 5 2

Knit directory: cTWAS_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ data
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R code/ctwas_config.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version bcaadf3. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .ipynb_checkpoints/

Untracked files:
    Untracked:  G_list.RData
    Untracked:  Rplot.png
    Untracked:  SCZ_annotation.xlsx
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/AF_out/
    Untracked:  code/Autism_out/
    Untracked:  code/BMI_S_out/
    Untracked:  code/BMI_out/
    Untracked:  code/Glucose_out/
    Untracked:  code/LDL_S_out/
    Untracked:  code/SCZ_2014_EUR_out/
    Untracked:  code/SCZ_2018_S_out/
    Untracked:  code/SCZ_2018_out/
    Untracked:  code/SCZ_2020_Single_out/
    Untracked:  code/SCZ_2020_out/
    Untracked:  code/SCZ_S_out/
    Untracked:  code/SCZ_out/
    Untracked:  code/T2D_out/
    Untracked:  code/ctwas_config.R
    Untracked:  code/mapping.R
    Untracked:  code/out/
    Untracked:  code/process_scz_2018_snps.R
    Untracked:  code/run_AF_analysis.sbatch
    Untracked:  code/run_AF_analysis.sh
    Untracked:  code/run_AF_ctwas_rss_LDR.R
    Untracked:  code/run_Autism_analysis.sbatch
    Untracked:  code/run_Autism_analysis.sh
    Untracked:  code/run_Autism_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_analysis.sbatch
    Untracked:  code/run_BMI_analysis.sh
    Untracked:  code/run_BMI_analysis_S.sbatch
    Untracked:  code/run_BMI_analysis_S.sh
    Untracked:  code/run_BMI_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_ctwas_rss_LDR_S.R
    Untracked:  code/run_Glucose_analysis.sbatch
    Untracked:  code/run_Glucose_analysis.sh
    Untracked:  code/run_Glucose_ctwas_rss_LDR.R
    Untracked:  code/run_LDL_analysis_S.sbatch
    Untracked:  code/run_LDL_analysis_S.sh
    Untracked:  code/run_LDL_ctwas_rss_LDR_S.R
    Untracked:  code/run_SCZ_2014_EUR_analysis.sbatch
    Untracked:  code/run_SCZ_2014_EUR_analysis.sh
    Untracked:  code/run_SCZ_2014_EUR_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2018_analysis.sbatch
    Untracked:  code/run_SCZ_2018_analysis.sh
    Untracked:  code/run_SCZ_2018_analysis_S.sbatch
    Untracked:  code/run_SCZ_2018_analysis_S.sh
    Untracked:  code/run_SCZ_2018_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2018_ctwas_rss_LDR_S.R
    Untracked:  code/run_SCZ_2020_Single_analysis.sbatch
    Untracked:  code/run_SCZ_2020_Single_analysis.sh
    Untracked:  code/run_SCZ_2020_Single_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2020_analysis.sbatch
    Untracked:  code/run_SCZ_2020_analysis.sh
    Untracked:  code/run_SCZ_2020_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_analysis.sbatch
    Untracked:  code/run_SCZ_analysis.sh
    Untracked:  code/run_SCZ_analysis_S.sbatch
    Untracked:  code/run_SCZ_analysis_S.sh
    Untracked:  code/run_SCZ_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_ctwas_rss_LDR_S.R
    Untracked:  code/run_T2D_analysis.sbatch
    Untracked:  code/run_T2D_analysis.sh
    Untracked:  code/run_T2D_ctwas_rss_LDR.R
    Untracked:  code/wflow_build.R
    Untracked:  code/wflow_build.sbatch
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/GO_Terms/
    Untracked:  data/PGC3_SCZ_wave3_public.v2.tsv
    Untracked:  data/SCZ/
    Untracked:  data/SCZ_2014_EUR/
    Untracked:  data/SCZ_2018/
    Untracked:  data/SCZ_2018_S/
    Untracked:  data/SCZ_2020/
    Untracked:  data/SCZ_S/
    Untracked:  data/Supplementary Table 15 - MAGMA.xlsx
    Untracked:  data/Supplementary Table 20 - Prioritised Genes.xlsx
    Untracked:  data/T2D/
    Untracked:  data/UKBB/
    Untracked:  data/UKBB_SNPs_Info.text
    Untracked:  data/gene_OMIM.txt
    Untracked:  data/gene_pip_0.8.txt
    Untracked:  data/mashr_Heart_Atrial_Appendage.db
    Untracked:  data/mashr_sqtl/
    Untracked:  data/scz_2018.RDS
    Untracked:  data/summary_known_genes_annotations.xlsx
    Untracked:  data/untitled.txt
    Untracked:  top_genes_32.txt
    Untracked:  top_genes_37.txt
    Untracked:  top_genes_43.txt
    Untracked:  top_genes_54.txt
    Untracked:  top_genes_81.txt
    Untracked:  z_snp_pos_SCZ.RData
    Untracked:  z_snp_pos_SCZ_2014_EUR.RData
    Untracked:  z_snp_pos_SCZ_2018.RData
    Untracked:  z_snp_pos_SCZ_2020.RData

Unstaged changes:
    Deleted:    analysis/BMI_S_results.Rmd
    Modified:   analysis/SCZ_2018_Brain_Amygdala_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Anterior_cingulate_cortex_BA24_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Caudate_basal_ganglia_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cerebellar_Hemisphere_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cerebellum_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cortex_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Frontal_Cortex_BA9_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Hippocampus_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Hypothalamus_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Nucleus_accumbens_basal_ganglia_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Putamen_basal_ganglia_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Spinal_cord_cervical_c-1_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Substantia_nigra_S.Rmd
    Modified:   analysis/ttt.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/SCZ_2018_Brain_Frontal_Cortex_BA9_S.Rmd) and HTML (docs/SCZ_2018_Brain_Frontal_Cortex_BA9_S.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd bcaadf3 sq-96 2022-05-19 update
html bcaadf3 sq-96 2022-05-19 update
Rmd be614ed sq-96 2022-05-19 update
html be614ed sq-96 2022-05-19 update
Rmd 7d08c9b sq-96 2022-05-18 update
html 7d08c9b sq-96 2022-05-18 update
Rmd 2749be9 sq-96 2022-05-12 update
html 2749be9 sq-96 2022-05-12 update
html 011327d sq-96 2022-05-12 update
Rmd 6c6abbd sq-96 2022-05-12 update

library(reticulate)
use_python("/scratch/midway2/shengqian/miniconda3/envs/PythonForR/bin/python",required=T)

Weight QC

#number of imputed weights
nrow(qclist_all)
[1] 21088
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
1945 1489 1242  813  857 1099 1218  761  872  971 1260 1129  427  730  701  875 
  17   18   19   20   21   22 
1505  291 1506  706   43  648 
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 18528
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.8786
INFO:numexpr.utils:Note: NumExpr detected 56 cores but "NUMEXPR_MAX_THREADS" not set, so enforcing safe limit of 8.
finish

Attaching package: 'dplyr'
The following objects are masked from 'package:stats':

    filter, lag
The following objects are masked from 'package:base':

    intersect, setdiff, setequal, union

Check convergence of parameters

Version Author Date
2749be9 sq-96 2022-05-12
     gene       snp 
0.0079195 0.0003085 
  gene    snp 
15.345  9.982 
[1] 105318
[1]    7501 6309950
    gene      snp 
0.008655 0.184514 
[1] 0.02202 1.09251

Genes with highest PIPs

Version Author Date
bcaadf3 sq-96 2022-05-19
be614ed sq-96 2022-05-19
2749be9 sq-96 2022-05-12
      genename region_tag susie_pip    mu2       PVE       z num_intron
3525      LRP8       1_33    1.1351  34.30 0.0003112   4.820          6
791     BTN2A1       6_20    1.0285 157.11 0.0015234 -13.238          4
5082   PYROXD2      10_62    0.9822  23.05 0.0001954  -4.285          9
3424 LINC00320       21_6    0.9439  29.89 0.0002422  -5.336          4
719       BDNF      11_19    0.9220  23.77 0.0001901  -4.348          3
3360     LAMA5      20_36    0.9116  28.08 0.0001949  -4.299         14
1557     CRTAP       3_24    0.8882  20.38 0.0001502   3.929          3
652     B3GAT1      11_84    0.8763  22.16 0.0001522   4.287          7
6490     THAP8      19_25    0.8541  20.59 0.0001383  -3.802          2
6054    SNRPA1      15_50    0.8325  23.29 0.0001424  -3.925          6
4710     PLCB2      15_14    0.8308  25.63 0.0001382   4.470          5
5772     SF3B1      2_117    0.8056  47.59 0.0002835  -7.053          3
2595    GIGYF1       7_62    0.7930  28.66 0.0001691   5.266          2
3600    MAD1L1        7_3    0.7856  55.70 0.0003067   7.478          3
7044     VARS2       6_25    0.7827  95.93 0.0005580 -11.413          1
3576      LY6H       8_94    0.7826  22.30 0.0001256  -4.186          4
152     ACTR1B       2_57    0.7573  20.67 0.0001104   3.978          5
5829     SIPA1      11_36    0.7516  28.32 0.0001507  -4.893          2
6034     SMYD2      1_108    0.7427  23.47 0.0001207   3.952          3
1937    DPYSL3       5_86    0.7423  22.76 0.0001191   4.157          1
     num_sqtl
3525        6
791         5
5082       10
3424        4
719         3
3360       21
1557        3
652        12
6490        4
6054        7
4710        5
5772        3
2595        2
3600        5
7044        1
3576        4
152         5
5829        2
6034        3
1937        1

Genes with highest PVE

      genename region_tag susie_pip    mu2       PVE       z num_intron
791     BTN2A1       6_20    1.0285 157.11 0.0015234 -13.238          4
439       APOM       6_26    0.4871 631.82 0.0014228  11.590          3
7043      VARS       6_26    0.4360 634.35 0.0011450 -11.620          1
7044     VARS2       6_25    0.7827  95.93 0.0005580 -11.413          1
3525      LRP8       1_33    1.1351  34.30 0.0003112   4.820          6
3600    MAD1L1        7_3    0.7856  55.70 0.0003067   7.478          3
5772     SF3B1      2_117    0.8056  47.59 0.0002835  -7.053          3
3424 LINC00320       21_6    0.9439  29.89 0.0002422  -5.336          4
2548   GATAD2A      19_15    0.6956  48.44 0.0002193  -6.668          4
2596    GIGYF2      2_137    0.7039  54.88 0.0002153   7.841          5
1816      DGKZ      11_28    0.6718  49.23 0.0002110  -7.216          2
5082   PYROXD2      10_62    0.9822  23.05 0.0001954  -4.285          9
3360     LAMA5      20_36    0.9116  28.08 0.0001949  -4.299         14
719       BDNF      11_19    0.9220  23.77 0.0001901  -4.348          3
2595    GIGYF1       7_62    0.7930  28.66 0.0001691   5.266          2
4135     NDRG4      16_31    0.6541  38.82 0.0001527  -6.343          4
6823   TSNARE1       8_93    0.7412  33.80 0.0001523   6.367          7
652     B3GAT1      11_84    0.8763  22.16 0.0001522   4.287          7
5829     SIPA1      11_36    0.7516  28.32 0.0001507  -4.893          2
1557     CRTAP       3_24    0.8882  20.38 0.0001502   3.929          3
     num_sqtl
791         5
439         3
7043        1
7044        1
3525        6
3600        5
5772        3
3424        4
2548        4
2596        5
1816        2
5082       10
3360       21
719         3
2595        2
4135        4
6823        7
652        12
5829        2
1557        3

Comparing z scores and PIPs

Version Author Date
be614ed sq-96 2022-05-19
2749be9 sq-96 2022-05-12

Version Author Date
bcaadf3 sq-96 2022-05-19
be614ed sq-96 2022-05-19
2749be9 sq-96 2022-05-12
[1] 0.01866
     genename region_tag susie_pip    mu2       PVE       z num_intron num_sqtl
791    BTN2A1       6_20 1.028e+00 157.11 1.523e-03 -13.238          4        5
7303  ZKSCAN3       6_22 4.155e-02 166.82 1.595e-06 -13.135          4        4
4612    PGBD1       6_22 4.774e-02 165.70 2.426e-06 -13.087          3        4
7043     VARS       6_26 4.360e-01 634.35 1.145e-03 -11.620          1        1
439      APOM       6_26 4.871e-01 631.82 1.423e-03  11.590          3        3
7044    VARS2       6_25 7.827e-01  95.93 5.580e-04 -11.413          1        1
561     ATAT1       6_24 6.167e-02  84.80 3.063e-06  11.039          1        1
928  C6orf136       6_24 1.177e-01  84.50 1.112e-05 -11.031          2        2
2438    FLOT1       6_24 2.516e-01  83.18 4.983e-05  10.981          6        7
793    BTN3A2       6_20 8.199e-02 103.10 2.442e-06 -10.759          4        5
667      BAG6       6_26 2.191e-09 504.13 2.299e-20  10.247          7        8
5369     RNF5       6_26 8.494e-13 470.42 3.223e-27 -10.045          1        1
1128   CCHCR1       6_25 8.454e-02  63.68 1.907e-06   9.508         14       20
2724    GPSM3       6_26 2.132e-14 419.92 1.812e-30   9.377          1        1
1768     DDR1       6_25 6.371e-03  62.32 2.402e-08   9.016          1        1
2897  HLA-DMA       6_27 6.303e-02  69.97 1.354e-06   8.781          5        7
4333    NT5C2      10_66 5.360e-01  50.29 1.300e-04  -8.541         10       14
535     AS3MT      10_66 3.162e-01  43.68 4.061e-05   7.907          4        4
3960     MSH5       6_26 0.000e+00 238.50 0.000e+00  -7.892          2        2
2596   GIGYF2      2_137 7.039e-01  54.88 2.153e-04   7.841          5        5

GO enrichment analysis for genes with PIP>0.5

#number of genes for gene set enrichment
length(genes)
[1] 71
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"

Version Author Date
bcaadf3 sq-96 2022-05-19
be614ed sq-96 2022-05-19
2749be9 sq-96 2022-05-12
                                                               Term Overlap
1 positive regulation of neuron projection development (GO:0010976)    6/88
2  positive regulation of cell projection organization (GO:0031346)   5/117
  Adjusted.P.value                                 Genes
1        0.0003941 NDRG4;BDNF;DPYSL3;PRKD1;SERPINI1;LRP8
2        0.0170544      NDRG4;BDNF;DPYSL3;PRKD1;SERPINI1
[1] "GO_Cellular_Component_2021"

Version Author Date
bcaadf3 sq-96 2022-05-19
be614ed sq-96 2022-05-19
2749be9 sq-96 2022-05-12
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"

Version Author Date
bcaadf3 sq-96 2022-05-19
be614ed sq-96 2022-05-19
2749be9 sq-96 2022-05-12
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)

DisGeNET enrichment analysis for genes with PIP>0.5

                                                  Description     FDR Ratio
52                                                    Measles 0.05983  1/36
72                                              Schizophrenia 0.05983 10/36
209                          Osteogenesis Imperfecta Type VII 0.05983  1/36
210                        Maple Syrup Urine Disease, Type IA 0.05983  1/36
211 Familial encephalopathy with neuroserpin inclusion bodies 0.05983  1/36
217 HEMOLYTIC UREMIC SYNDROME, ATYPICAL, SUSCEPTIBILITY TO, 2 0.05983  1/36
221                MENTAL RETARDATION, AUTOSOMAL RECESSIVE 14 0.05983  1/36
224                                   MECKEL SYNDROME, TYPE 9 0.05983  1/36
228      MITOCHONDRIAL COMPLEX III DEFICIENCY, NUCLEAR TYPE 5 0.05983  1/36
236                SPASTIC PARAPLEGIA 45, AUTOSOMAL RECESSIVE 0.05983  1/36
     BgRatio
52    1/9703
72  883/9703
209   1/9703
210   1/9703
211   1/9703
217   1/9703
221   1/9703
224   1/9703
228   1/9703
236   1/9703

WebGestalt enrichment analysis for genes with PIP>0.5

Warning: replacing previous import 'lifecycle::last_warnings' by
'rlang::last_warnings' when loading 'hms'
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL

PIP Manhattan Plot

Warning: ggrepel: 26 unlabeled data points (too many overlaps). Consider
increasing max.overlaps

Version Author Date
bcaadf3 sq-96 2022-05-19
be614ed sq-96 2022-05-19
7d08c9b sq-96 2022-05-18
2749be9 sq-96 2022-05-12

Sensitivity, specificity and precision for silver standard genes

#number of genes in known annotations
print(length(known_annotations))
[1] 130
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 59
#significance threshold for TWAS
print(sig_thresh)
[1] 4.504
#number of ctwas genes
length(ctwas_genes)
[1] 12
#number of TWAS genes
length(twas_genes)
[1] 140
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
     genename region_tag susie_pip   mu2       PVE      z num_intron num_sqtl
652    B3GAT1      11_84    0.8763 22.16 0.0001522  4.287          7       12
719      BDNF      11_19    0.9220 23.77 0.0001901 -4.348          3        3
1557    CRTAP       3_24    0.8882 20.38 0.0001502  3.929          3        3
3360    LAMA5      20_36    0.9116 28.08 0.0001949 -4.299         14       21
4710    PLCB2      15_14    0.8308 25.63 0.0001382  4.470          5        5
5082  PYROXD2      10_62    0.9822 23.05 0.0001954 -4.285          9       10
6054   SNRPA1      15_50    0.8325 23.29 0.0001424 -3.925          6        7
6490    THAP8      19_25    0.8541 20.59 0.0001383 -3.802          2        4
#sensitivity / recall
print(sensitivity)
  ctwas    TWAS 
0.02308 0.13077 
#specificity
print(specificity)
 ctwas   TWAS 
0.9988 0.9835 
#precision / PPV
print(precision)
 ctwas   TWAS 
0.2500 0.1214 

sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] readxl_1.4.0      forcats_0.5.1     stringr_1.4.0     purrr_0.3.4      
 [5] readr_1.4.0       tidyr_1.1.3       tidyverse_1.3.1   tibble_3.1.7     
 [9] WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0       cowplot_1.1.1    
[13] ggplot2_3.3.5     dplyr_1.0.7       reticulate_1.25   workflowr_1.7.0  

loaded via a namespace (and not attached):
 [1] fs_1.5.0          lubridate_1.7.10  doParallel_1.0.16 httr_1.4.2       
 [5] rprojroot_2.0.2   tools_4.1.0       backports_1.2.1   doRNG_1.8.2      
 [9] bslib_0.2.5.1     utf8_1.2.1        R6_2.5.0          vipor_0.4.5      
[13] DBI_1.1.1         colorspace_2.0-2  withr_2.4.2       ggrastr_1.0.1    
[17] tidyselect_1.1.1  processx_3.5.2    curl_4.3.2        compiler_4.1.0   
[21] git2r_0.28.0      rvest_1.0.0       cli_3.0.0         Cairo_1.5-15     
[25] xml2_1.3.2        labeling_0.4.2    sass_0.4.0        scales_1.1.1     
[29] callr_3.7.0       systemfonts_1.0.4 apcluster_1.4.9   digest_0.6.27    
[33] rmarkdown_2.9     svglite_2.0.0     pkgconfig_2.0.3   htmltools_0.5.1.1
[37] dbplyr_2.1.1      highr_0.9         rlang_1.0.2       rstudioapi_0.13  
[41] jquerylib_0.1.4   farver_2.1.0      generics_0.1.0    jsonlite_1.7.2   
[45] magrittr_2.0.1    Matrix_1.3-3      ggbeeswarm_0.6.0  Rcpp_1.0.7       
[49] munsell_0.5.0     fansi_0.5.0       lifecycle_1.0.0   stringi_1.6.2    
[53] whisker_0.4       yaml_2.2.1        plyr_1.8.6        grid_4.1.0       
[57] ggrepel_0.9.1     parallel_4.1.0    promises_1.2.0.1  crayon_1.4.1     
[61] lattice_0.20-44   haven_2.4.1       hms_1.1.0         knitr_1.33       
[65] ps_1.6.0          pillar_1.7.0      igraph_1.2.6      rjson_0.2.20     
[69] rngtools_1.5      reshape2_1.4.4    codetools_0.2-18  reprex_2.0.0     
[73] glue_1.4.2        evaluate_0.14     getPass_0.2-2     modelr_0.1.8     
[77] data.table_1.14.0 png_0.1-7         vctrs_0.3.8       httpuv_1.6.1     
[81] foreach_1.5.1     cellranger_1.1.0  gtable_0.3.0      assertthat_0.2.1 
[85] xfun_0.24         broom_0.7.8       later_1.2.0       iterators_1.0.13 
[89] beeswarm_0.4.0    ellipsis_0.3.2    here_1.0.1