Last updated: 2022-04-19

Checks: 5 2

Knit directory: cTWAS_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ data
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R code/ctwas_config.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version ba919ab. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .ipynb_checkpoints/
    Ignored:    data/AF/

Untracked files:
    Untracked:  Rplot.png
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/AF_out/
    Untracked:  code/Autism_out/
    Untracked:  code/BMI_S_out/
    Untracked:  code/BMI_out/
    Untracked:  code/Glucose_out/
    Untracked:  code/LDL_S_out/
    Untracked:  code/SCZ_2014_EUR_out/
    Untracked:  code/SCZ_2018_out/
    Untracked:  code/SCZ_2020_Single_out/
    Untracked:  code/SCZ_2020_out/
    Untracked:  code/SCZ_S_out/
    Untracked:  code/SCZ_out/
    Untracked:  code/T2D_out/
    Untracked:  code/ctwas_config.R
    Untracked:  code/mapping.R
    Untracked:  code/out/
    Untracked:  code/process_scz_2018_snps.R
    Untracked:  code/run_AF_analysis.sbatch
    Untracked:  code/run_AF_analysis.sh
    Untracked:  code/run_AF_ctwas_rss_LDR.R
    Untracked:  code/run_Autism_analysis.sbatch
    Untracked:  code/run_Autism_analysis.sh
    Untracked:  code/run_Autism_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_analysis.sbatch
    Untracked:  code/run_BMI_analysis.sh
    Untracked:  code/run_BMI_analysis_S.sbatch
    Untracked:  code/run_BMI_analysis_S.sh
    Untracked:  code/run_BMI_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_ctwas_rss_LDR_S.R
    Untracked:  code/run_Glucose_analysis.sbatch
    Untracked:  code/run_Glucose_analysis.sh
    Untracked:  code/run_Glucose_ctwas_rss_LDR.R
    Untracked:  code/run_LDL_analysis_S.sbatch
    Untracked:  code/run_LDL_analysis_S.sh
    Untracked:  code/run_LDL_ctwas_rss_LDR_S.R
    Untracked:  code/run_SCZ_2014_EUR_analysis.sbatch
    Untracked:  code/run_SCZ_2014_EUR_analysis.sh
    Untracked:  code/run_SCZ_2014_EUR_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2018_analysis.sbatch
    Untracked:  code/run_SCZ_2018_analysis.sh
    Untracked:  code/run_SCZ_2018_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2020_Single_analysis.sbatch
    Untracked:  code/run_SCZ_2020_Single_analysis.sh
    Untracked:  code/run_SCZ_2020_Single_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2020_analysis.sbatch
    Untracked:  code/run_SCZ_2020_analysis.sh
    Untracked:  code/run_SCZ_2020_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_analysis.sbatch
    Untracked:  code/run_SCZ_analysis.sh
    Untracked:  code/run_SCZ_analysis_S.sbatch
    Untracked:  code/run_SCZ_analysis_S.sh
    Untracked:  code/run_SCZ_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_ctwas_rss_LDR_S.R
    Untracked:  code/run_T2D_analysis.sbatch
    Untracked:  code/run_T2D_analysis.sh
    Untracked:  code/run_T2D_ctwas_rss_LDR.R
    Untracked:  code/wflow_build.R
    Untracked:  code/wflow_build.sbatch
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/BMI/
    Untracked:  data/GO_Terms/
    Untracked:  data/PGC3_SCZ_wave3_public.v2.tsv
    Untracked:  data/SCZ/
    Untracked:  data/SCZ_2014_EUR/
    Untracked:  data/SCZ_2018/
    Untracked:  data/SCZ_2020/
    Untracked:  data/SCZ_2020_Single/
    Untracked:  data/SCZ_S/
    Untracked:  data/Supplementary Table 15 - MAGMA.xlsx
    Untracked:  data/Supplementary Table 20 - Prioritised Genes.xlsx
    Untracked:  data/T2D/
    Untracked:  data/UKBB/
    Untracked:  data/UKBB_SNPs_Info.text
    Untracked:  data/gene_OMIM.txt
    Untracked:  data/gene_pip_0.8.txt
    Untracked:  data/mashr_Heart_Atrial_Appendage.db
    Untracked:  data/mashr_sqtl/
    Untracked:  data/scz_2018.RDS
    Untracked:  data/summary_known_genes_annotations.xlsx
    Untracked:  data/untitled.txt
    Untracked:  top_genes_32.txt
    Untracked:  top_genes_37.txt
    Untracked:  top_genes_43.txt
    Untracked:  top_genes_81.txt

Unstaged changes:
    Modified:   analysis/SCZ_2018_Brain_Amygdala.Rmd
    Modified:   analysis/SCZ_2018_Brain_Anterior_cingulate_cortex_BA24.Rmd
    Modified:   analysis/SCZ_2018_Brain_Caudate_basal_ganglia.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cerebellar_Hemisphere.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cerebellum.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cortex.Rmd
    Modified:   analysis/SCZ_2018_Brain_Frontal_Cortex_BA9.Rmd
    Modified:   analysis/SCZ_2018_Brain_Hippocampus.Rmd
    Modified:   analysis/SCZ_2018_Brain_Hypothalamus.Rmd
    Modified:   analysis/SCZ_2018_Brain_Nucleus_accumbens_basal_ganglia.Rmd
    Modified:   analysis/SCZ_2018_Brain_Putamen_basal_ganglia.Rmd
    Modified:   analysis/SCZ_2018_Brain_Spinal_cord_cervical_c-1.Rmd
    Modified:   analysis/SCZ_2018_Brain_Substantia_nigra.Rmd
    Modified:   analysis/SCZ_Annotation_Analysis.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/SCZ_2018_Brain_Anterior_cingulate_cortex_BA24.Rmd) and HTML (docs/SCZ_2018_Brain_Anterior_cingulate_cortex_BA24.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 9ddc9c4 sq-96 2022-04-18 update
Rmd f6e7062 sq-96 2022-04-17 update
html f6e7062 sq-96 2022-04-17 update

Weight QC

#number of imputed weights
nrow(qclist_all)
[1] 9453
#number of imputed weights by chromosome
table(qclist_all$chr)

  1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20 
931 670 567 367 441 542 454 359 342 370 583 552 199 327 337 397 555 155 740 289 
 21  22 
 29 247 
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 6793
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.7186

Check convergence of parameters

#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
     gene       snp 
0.0108717 0.0003169 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
 gene   snp 
16.97 10.04 
#report sample size
print(sample_size)
[1] 105318
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]    9453 6309950
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
   gene     snp 
0.01656 0.19057 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.04975 1.07745

Genes with highest PIPs

           genename region_tag susie_pip    mu2       PVE      z num_eqtl
10719        ZNF823      19_10    0.9845  38.35 0.0003585  6.180        2
12952  RP11-230C9.4      6_102    0.9510  23.70 0.0002140 -4.685        2
11817    AC012074.2       2_15    0.9399  23.13 0.0002064  4.655        1
7971          JSRP1       19_3    0.8892  27.65 0.0002335  4.825        1
3590        BHLHE41      12_18    0.8795  24.00 0.0002004  4.516        1
2969          SF3B1      2_117    0.8722  51.50 0.0004265  7.265        1
11773     HIST1H2BN       6_21    0.8722 108.20 0.0008960 13.396        1
10112       TMEM222       1_19    0.8254  22.21 0.0001740  4.303        1
108           ELAC2      17_11    0.7888  22.90 0.0001715  4.752        1
10725         RPL12       9_66    0.7031  22.54 0.0001505  4.070        2
10939     LINC00862      1_101    0.6920  24.02 0.0001578  4.314        2
2898         LMAN2L       2_57    0.6699  25.27 0.0001607 -4.313        2
11543     LINC00390      13_17    0.6653  23.17 0.0001464 -4.540        1
8291         INO80E      16_24    0.6644  48.98 0.0003090  6.995        1
12860 RP11-247A12.7       9_66    0.6323  23.31 0.0001400  4.468        2
2584         DUSP16      12_11    0.6315  21.72 0.0001302 -3.779        1
7048          DBF4B      17_26    0.6202  20.50 0.0001207  3.890        1
8043          PRDX2      19_10    0.6098  22.76 0.0001318 -4.020        1
12334  RP11-65M17.3      11_66    0.6040  22.85 0.0001311  4.414        1
2524            MDK      11_28    0.5704  49.01 0.0002654 -7.159        1

Genes with largest effect sizes

         genename region_tag susie_pip    mu2       PVE       z num_eqtl
11039        APOM       6_26 4.046e-01 132.87 5.104e-04  11.590        1
12066         C4A       6_26 4.639e-02 131.28 5.783e-05  11.341        2
11035     ABHD16A       6_26 2.649e-01 131.06 3.296e-04  11.526        1
4944        VARS2       6_25 1.322e-01 123.89 1.555e-04  11.413        1
11773   HIST1H2BN       6_21 8.722e-01 108.20 8.960e-04  13.396        1
11008      NOTCH4       6_26 5.774e-04 103.58 5.679e-07   7.712        2
4935        FLOT1       6_24 8.245e-02  85.77 6.715e-05 -10.981        1
11034      LY6G6C       6_26 1.682e-05  82.01 1.310e-08   9.781        2
10534    HLA-DQA1       6_26 4.276e-06  75.34 3.059e-09   3.389        1
13060 RP1-86C11.7       6_21 4.090e-02  74.64 2.899e-05  10.889        1
9388     HLA-DQB1       6_26 7.594e-08  74.18 5.349e-11   4.986        1
11000     HLA-DMA       6_27 3.928e-02  71.09 2.652e-05  -8.720        2
10109      BTN3A2       6_20 1.638e-02  71.09 1.106e-05   9.166        2
10416    HLA-DRB1       6_26 8.466e-09  58.17 4.676e-12   1.359        2
1184     PPP1R13B      14_54 2.996e-01  56.68 1.612e-04  -6.610        2
455      MPHOSPH9      12_75 2.270e-01  56.53 1.219e-04   7.662        1
11277       DDAH2       6_26 1.744e-07  55.33 9.159e-11   8.149        1
10785     ZKSCAN8       6_22 1.025e-02  54.32 5.285e-06   7.317        2
10253     ZSCAN23       6_22 5.184e-02  51.54 2.537e-05  -7.854        1
2969        SF3B1      2_117 8.722e-01  51.50 4.265e-04   7.265        1

Genes with highest PVE

           genename region_tag susie_pip    mu2       PVE      z num_eqtl
11773     HIST1H2BN       6_21    0.8722 108.20 0.0008960 13.396        1
11039          APOM       6_26    0.4046 132.87 0.0005104 11.590        1
2969          SF3B1      2_117    0.8722  51.50 0.0004265  7.265        1
10719        ZNF823      19_10    0.9845  38.35 0.0003585  6.180        2
11035       ABHD16A       6_26    0.2649 131.06 0.0003296 11.526        1
8291         INO80E      16_24    0.6644  48.98 0.0003090  6.995        1
2524            MDK      11_28    0.5704  49.01 0.0002654 -7.159        1
7971          JSRP1       19_3    0.8892  27.65 0.0002335  4.825        1
12952  RP11-230C9.4      6_102    0.9510  23.70 0.0002140 -4.685        2
11817    AC012074.2       2_15    0.9399  23.13 0.0002064  4.655        1
3590        BHLHE41      12_18    0.8795  24.00 0.0002004  4.516        1
7325          THOC7       3_43    0.4734  41.15 0.0001850 -6.249        1
5786         CCDC39      3_111    0.4142  45.15 0.0001776 -6.797        1
10112       TMEM222       1_19    0.8254  22.21 0.0001740  4.303        1
108           ELAC2      17_11    0.7888  22.90 0.0001715  4.752        1
5316          FURIN      15_42    0.4801  35.91 0.0001637 -5.772        1
7973        GATAD2A      19_15    0.3678  46.83 0.0001636 -6.577        2
1184       PPP1R13B      14_54    0.2996  56.68 0.0001612 -6.610        2
13014 RP11-350N15.5       8_34    0.4475  37.89 0.0001610  5.963        1
2898         LMAN2L       2_57    0.6699  25.27 0.0001607 -4.313        2

Genes with largest z scores

         genename region_tag susie_pip    mu2       PVE       z num_eqtl
11773   HIST1H2BN       6_21 8.722e-01 108.20 8.960e-04  13.396        1
11039        APOM       6_26 4.046e-01 132.87 5.104e-04  11.590        1
11035     ABHD16A       6_26 2.649e-01 131.06 3.296e-04  11.526        1
4944        VARS2       6_25 1.322e-01 123.89 1.555e-04  11.413        1
12066         C4A       6_26 4.639e-02 131.28 5.783e-05  11.341        2
4935        FLOT1       6_24 8.245e-02  85.77 6.715e-05 -10.981        1
13060 RP1-86C11.7       6_21 4.090e-02  74.64 2.899e-05  10.889        1
11034      LY6G6C       6_26 1.682e-05  82.01 1.310e-08   9.781        2
10109      BTN3A2       6_20 1.638e-02  71.09 1.106e-05   9.166        2
11000     HLA-DMA       6_27 3.928e-02  71.09 2.652e-05  -8.720        2
6075        CNNM2      10_66 1.072e-01  48.24 4.911e-05  -8.161        1
11277       DDAH2       6_26 1.744e-07  55.33 9.159e-11   8.149        1
10253     ZSCAN23       6_22 5.184e-02  51.54 2.537e-05  -7.854        1
11008      NOTCH4       6_26 5.774e-04 103.58 5.679e-07   7.712        2
455      MPHOSPH9      12_75 2.270e-01  56.53 1.219e-04   7.662        1
10785     ZKSCAN8       6_22 1.025e-02  54.32 5.285e-06   7.317        2
2969        SF3B1      2_117 8.722e-01  51.50 4.265e-04   7.265        1
11051      POU5F1       6_25 1.734e-02  42.28 6.962e-06  -7.217        2
2524          MDK      11_28 5.704e-01  49.01 2.654e-04  -7.159        1
10542     ZSCAN16       6_22 1.090e-02  48.26 4.994e-06   7.135        1

Comparing z scores and PIPs

[1] 0.01195

GO enrichment analysis for genes with PIP>0.5

#number of genes for gene set enrichment
length(genes)
[1] 23
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Cellular_Component_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)

DisGeNET enrichment analysis for genes with PIP>0.5

                                        Description     FDR Ratio  BgRatio
29                              Prostatic Neoplasms 0.02411   4/9 616/9703
45                   Malignant neoplasm of prostate 0.02411   4/9 616/9703
62       Refractory anemia with ringed sideroblasts 0.02411   1/9   2/9703
74                   PROSTATE CANCER, HEREDITARY, 2 0.02411   1/9   1/9703
76 COMBINED OXIDATIVE PHOSPHORYLATION DEFICIENCY 17 0.02411   1/9   1/9703
78       MENTAL RETARDATION, AUTOSOMAL RECESSIVE 52 0.02411   1/9   1/9703
41                           Malignant mesothelioma 0.03368   2/9 109/9703
42                       Malignant melanoma of iris 0.03368   1/9   5/9703
43                    Malignant melanoma of choroid 0.03368   1/9   5/9703
55                            Long Sleeper Syndrome 0.03368   1/9   7/9703

WebGestalt enrichment analysis for genes with PIP>0.5

Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL

PIP Manhattan Plot

Sensitivity, specificity and precision for silver standard genes

#number of genes in known annotations
print(length(known_annotations))
[1] 130
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 49
#significance threshold for TWAS
print(sig_thresh)
[1] 4.553
#number of ctwas genes
length(ctwas_genes)
[1] 8
#number of TWAS genes
length(twas_genes)
[1] 113
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
      genename region_tag susie_pip   mu2       PVE     z num_eqtl
10112  TMEM222       1_19    0.8254 22.21 0.0001740 4.303        1
3590   BHLHE41      12_18    0.8795 24.00 0.0002004 4.516        1
#sensitivity / recall
print(sensitivity)
  ctwas    TWAS 
0.01538 0.11538 
#specificity
print(specificity)
 ctwas   TWAS 
0.9994 0.9896 
#precision / PPV
print(precision)
 ctwas   TWAS 
0.2500 0.1327 

cTWAS is more precise than TWAS in distinguishing silver standard and bystander genes

#number of genes in known annotations (with imputed expression)
print(length(known_annotations))
[1] 49
#number of bystander genes (with imputed expression)
print(length(unrelated_genes))
[1] 518
#subset results to genes in known annotations or bystanders
ctwas_gene_res_subset <- ctwas_gene_res[ctwas_gene_res$genename %in% c(known_annotations, unrelated_genes),]

#assign ctwas and TWAS genes
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

#significance threshold for TWAS
print(sig_thresh)
[1] 4.553
#number of ctwas genes (in known annotations or bystanders)
length(ctwas_genes)
[1] 2
#number of TWAS genes (in known annotations or bystanders)
length(twas_genes)
[1] 38
#sensitivity / recall
sensitivity
  ctwas    TWAS 
0.04082 0.30612 
#specificity / (1 - False Positive Rate)
specificity
 ctwas   TWAS 
1.0000 0.9556 
#precision / PPV / (1 - False Discovery Rate)
precision
 ctwas   TWAS 
1.0000 0.3947 

pip_range <- (0:1000)/1000
sensitivity <- rep(NA, length(pip_range))
specificity <- rep(NA, length(pip_range))

for (index in 1:length(pip_range)){
  pip <- pip_range[index]
  ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>=pip]
  sensitivity[index] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
}

plot(1-specificity, sensitivity, type="l", xlim=c(0,1), ylim=c(0,1), main="", xlab="1 - Specificity", ylab="Sensitivity")
title(expression("ROC Curve for cTWAS (black) and TWAS (" * phantom("red") * ")"))
title(expression(phantom("ROC Curve for cTWAS (black) and TWAS (") * "red" * phantom(")")), col.main="red")

sig_thresh_range <- seq(from=0, to=max(abs(ctwas_gene_res_subset$z)), length.out=length(pip_range))

for (index in 1:length(sig_thresh_range)){
  sig_thresh_plot <- sig_thresh_range[index]
  twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>=sig_thresh_plot]
  sensitivity[index] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
}

lines(1-specificity, sensitivity, xlim=c(0,1), ylim=c(0,1), col="red", lty=1)

abline(a=0,b=1,lty=3)

#add previously computed points from the analysis
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

points(1-specificity_plot["ctwas"], sensitivity_plot["ctwas"], pch=21, bg="black")
points(1-specificity_plot["TWAS"], sensitivity_plot["TWAS"], pch=21, bg="red")

Undetected silver standard genes have low TWAS z-scores or stronger signal from nearby variants

#table of outcomes for silver standard genes
-sort(-table(silver_standard_case))
silver_standard_case
          Not Imputed Insignificant z-score         Nearby SNP(s) 
                   81                    34                    13 
 Detected (PIP > 0.8) 
                    2 
#show inconclusive genes
silver_standard_case[silver_standard_case=="Inconclusive"]
named character(0)


sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] GenomicRanges_1.36.1 GenomeInfoDb_1.20.0  IRanges_2.18.1      
 [4] S4Vectors_0.22.1     BiocGenerics_0.30.0  biomaRt_2.40.1      
 [7] readxl_1.3.1         forcats_0.5.1        stringr_1.4.0       
[10] dplyr_1.0.7          purrr_0.3.4          readr_2.1.1         
[13] tidyr_1.1.4          tidyverse_1.3.1      tibble_3.1.6        
[16] WebGestaltR_0.4.4    disgenet2r_0.99.2    enrichR_3.0         
[19] cowplot_1.1.1        ggplot2_3.3.5        workflowr_1.7.0     

loaded via a namespace (and not attached):
  [1] ggbeeswarm_0.6.0       colorspace_2.0-2       rjson_0.2.20          
  [4] ellipsis_0.3.2         rprojroot_2.0.2        XVector_0.24.0        
  [7] fs_1.5.2               rstudioapi_0.13        farver_2.1.0          
 [10] ggrepel_0.9.1          bit64_4.0.5            AnnotationDbi_1.46.0  
 [13] fansi_1.0.2            lubridate_1.8.0        xml2_1.3.3            
 [16] codetools_0.2-16       doParallel_1.0.17      cachem_1.0.6          
 [19] knitr_1.36             jsonlite_1.7.2         apcluster_1.4.8       
 [22] Cairo_1.5-12.2         broom_0.7.10           dbplyr_2.1.1          
 [25] compiler_3.6.1         httr_1.4.2             backports_1.4.1       
 [28] assertthat_0.2.1       Matrix_1.2-18          fastmap_1.1.0         
 [31] cli_3.1.0              later_0.8.0            prettyunits_1.1.1     
 [34] htmltools_0.5.2        tools_3.6.1            igraph_1.2.10         
 [37] GenomeInfoDbData_1.2.1 gtable_0.3.0           glue_1.6.2            
 [40] reshape2_1.4.4         doRNG_1.8.2            Rcpp_1.0.8            
 [43] Biobase_2.44.0         cellranger_1.1.0       jquerylib_0.1.4       
 [46] vctrs_0.3.8            svglite_1.2.2          iterators_1.0.14      
 [49] xfun_0.29              ps_1.6.0               rvest_1.0.2           
 [52] lifecycle_1.0.1        rngtools_1.5.2         XML_3.99-0.3          
 [55] zlibbioc_1.30.0        getPass_0.2-2          scales_1.1.1          
 [58] vroom_1.5.7            hms_1.1.1              promises_1.0.1        
 [61] yaml_2.2.1             curl_4.3.2             memoise_2.0.1         
 [64] ggrastr_1.0.1          gdtools_0.1.9          stringi_1.7.6         
 [67] RSQLite_2.2.8          highr_0.9              foreach_1.5.2         
 [70] rlang_1.0.1            pkgconfig_2.0.3        bitops_1.0-7          
 [73] evaluate_0.14          lattice_0.20-38        labeling_0.4.2        
 [76] bit_4.0.4              processx_3.5.2         tidyselect_1.1.1      
 [79] plyr_1.8.6             magrittr_2.0.2         R6_2.5.1              
 [82] generics_0.1.1         DBI_1.1.2              pillar_1.6.4          
 [85] haven_2.4.3            whisker_0.3-2          withr_2.4.3           
 [88] RCurl_1.98-1.5         modelr_0.1.8           crayon_1.5.0          
 [91] utf8_1.2.2             tzdb_0.2.0             rmarkdown_2.11        
 [94] progress_1.2.2         grid_3.6.1             data.table_1.14.2     
 [97] blob_1.2.2             callr_3.7.0            git2r_0.26.1          
[100] reprex_2.0.1           digest_0.6.29          httpuv_1.5.1          
[103] munsell_0.5.0          beeswarm_0.2.3         vipor_0.4.5