Last updated: 2022-03-14

Checks: 5 2

Knit directory: cTWAS_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ data
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R code/ctwas_config.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 4c71b11. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .ipynb_checkpoints/
    Ignored:    data/AF/

Untracked files:
    Untracked:  Rplot.png
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  analysis/SCZ_2014_EUR_Brain_Amygdala.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Anterior_cingulate_cortex_BA24.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Caudate_basal_ganglia.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Cerebellar_Hemisphere.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Cerebellum.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Cortex.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Frontal_Cortex_BA9.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Hippocampus.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Hypothalamus.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Nucleus_accumbens_basal_ganglia.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Putamen_basal_ganglia.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Spinal_cord_cervical_c-1.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Substantia_nigra.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Cortex.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Frontal_Cortex_BA9.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Hypothalamus.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Putamen_basal_ganglia.Rmd
    Untracked:  analysis/SCZ_Cross_Tissue_Analysis.Rmd
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/AF_out/
    Untracked:  code/Autism_out/
    Untracked:  code/BMI_S_out/
    Untracked:  code/BMI_out/
    Untracked:  code/Glucose_out/
    Untracked:  code/LDL_S_out/
    Untracked:  code/SCZ_2014_EUR_out/
    Untracked:  code/SCZ_2020_out/
    Untracked:  code/SCZ_S_out/
    Untracked:  code/SCZ_out/
    Untracked:  code/T2D_out/
    Untracked:  code/ctwas_config.R
    Untracked:  code/mapping.R
    Untracked:  code/out/
    Untracked:  code/run_AF_analysis.sbatch
    Untracked:  code/run_AF_analysis.sh
    Untracked:  code/run_AF_ctwas_rss_LDR.R
    Untracked:  code/run_Autism_analysis.sbatch
    Untracked:  code/run_Autism_analysis.sh
    Untracked:  code/run_Autism_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_analysis.sbatch
    Untracked:  code/run_BMI_analysis.sh
    Untracked:  code/run_BMI_analysis_S.sbatch
    Untracked:  code/run_BMI_analysis_S.sh
    Untracked:  code/run_BMI_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_ctwas_rss_LDR_S.R
    Untracked:  code/run_Glucose_analysis.sbatch
    Untracked:  code/run_Glucose_analysis.sh
    Untracked:  code/run_Glucose_ctwas_rss_LDR.R
    Untracked:  code/run_LDL_analysis_S.sbatch
    Untracked:  code/run_LDL_analysis_S.sh
    Untracked:  code/run_LDL_ctwas_rss_LDR_S.R
    Untracked:  code/run_SCZ_2014_EUR_analysis.sbatch
    Untracked:  code/run_SCZ_2014_EUR_analysis.sh
    Untracked:  code/run_SCZ_2014_EUR_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2020_analysis.sbatch
    Untracked:  code/run_SCZ_2020_analysis.sh
    Untracked:  code/run_SCZ_2020_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_analysis.sbatch
    Untracked:  code/run_SCZ_analysis.sh
    Untracked:  code/run_SCZ_analysis_S.sbatch
    Untracked:  code/run_SCZ_analysis_S.sh
    Untracked:  code/run_SCZ_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_ctwas_rss_LDR_S.R
    Untracked:  code/run_T2D_analysis.sbatch
    Untracked:  code/run_T2D_analysis.sh
    Untracked:  code/run_T2D_ctwas_rss_LDR.R
    Untracked:  code/wflow_build.R
    Untracked:  code/wflow_build.sbatch
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/BMI/
    Untracked:  data/PGC3_SCZ_wave3_public.v2.tsv
    Untracked:  data/SCZ/
    Untracked:  data/SCZ_2014_EUR/
    Untracked:  data/SCZ_2020/
    Untracked:  data/SCZ_S/
    Untracked:  data/T2D/
    Untracked:  data/UKBB/
    Untracked:  data/UKBB_SNPs_Info.text
    Untracked:  data/gene_OMIM.txt
    Untracked:  data/gene_pip_0.8.txt
    Untracked:  data/mashr_Heart_Atrial_Appendage.db
    Untracked:  data/mashr_sqtl/
    Untracked:  data/summary_known_genes_annotations.xlsx
    Untracked:  data/untitled.txt

Unstaged changes:
    Modified:   analysis/SCZ_Brain_Amygdala.Rmd
    Modified:   analysis/SCZ_Brain_Anterior_cingulate_cortex_BA24.Rmd
    Modified:   analysis/SCZ_Brain_Caudate_basal_ganglia.Rmd
    Modified:   analysis/SCZ_Brain_Cerebellar_Hemisphere.Rmd
    Modified:   analysis/SCZ_Brain_Cerebellum.Rmd
    Modified:   analysis/SCZ_Brain_Cortex.Rmd
    Modified:   analysis/SCZ_Brain_Frontal_Cortex_BA9.Rmd
    Modified:   analysis/SCZ_Brain_Hippocampus.Rmd
    Modified:   analysis/SCZ_Brain_Hypothalamus.Rmd
    Modified:   analysis/SCZ_Brain_Nucleus_accumbens_basal_ganglia.Rmd
    Modified:   analysis/SCZ_Brain_Putamen_basal_ganglia.Rmd
    Modified:   analysis/SCZ_Brain_Spinal_cord_cervical_c-1.Rmd
    Modified:   analysis/SCZ_Brain_Substantia_nigra.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


Weight QC

#number of imputed weights
nrow(qclist_all)
[1] 11132
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
1109  821  615  436  539  650  516  425  404  442  665  646  232  357  357  491 
  17   18   19   20   21   22 
 689  169  851  331  113  274 
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 8333
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.7486

Check convergence of parameters

#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
     gene       snp 
0.0102061 0.0002575 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
 gene   snp 
7.050 8.453 
#report sample size
print(sample_size)
[1] 77096
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]   11132 7352670
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
   gene     snp 
0.01039 0.20758 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.07017 1.67791

Genes with highest PIPs

          genename region_tag susie_pip   mu2       PVE      z num_eqtl
7629         THOC7       3_43    0.9890 39.37 0.0005051 -6.686        2
11134       ZNF823      19_10    0.9688 28.25 0.0003550  5.496        2
13483 RP11-230C9.4      6_102    0.9562 21.34 0.0002647 -4.560        2
12304   AC012074.2       2_15    0.8923 21.73 0.0002515  4.623        1
9133       MAP3K11      11_36    0.7999 22.00 0.0002283 -4.409        1
108          ELAC2      17_11    0.7856 21.19 0.0002159  4.518        1
491        TRAPPC3       1_22    0.7794 23.87 0.0002413  5.058        1
4755          SOX5      12_17    0.7373 22.17 0.0002120  4.068        1
12511      HLA-DMB       6_27    0.7127 51.09 0.0004723 -8.273        1
6584         TADA1       1_82    0.7017 24.29 0.0002211 -4.185        2
14019        ERICD       8_92    0.6929 21.71 0.0001951 -4.064        1
3036        LMAN2L       2_57    0.6766 24.53 0.0002153 -4.586        2
6336       ARFGAP2      11_29    0.6231 23.80 0.0001924  4.839        1
10221        ACOT1      14_34    0.6223 23.24 0.0001876  4.128        2
13323    LINC01415      18_30    0.6193 29.78 0.0002392 -5.655        1
733        PPP2R5B      11_36    0.5811 23.56 0.0001776 -4.610        1
440        FAM120A       9_47    0.5782 23.09 0.0001732 -4.571        1
6317         CNNM2      10_66    0.5620 48.88 0.0003563 -8.991        2
14039       EBLN3P       9_29    0.5564 21.65 0.0001562 -4.442        1
7965        GTF2A1      14_39    0.5533 20.67 0.0001484 -4.376        1

Genes with largest effect sizes

      genename region_tag susie_pip    mu2       PVE      z num_eqtl
6869     MMP16       8_63 0.000e+00 504.15 0.000e+00  3.645        1
2963      PCCB       3_84 0.000e+00 200.91 0.000e+00 -2.836        2
11472     APOM       6_26 1.476e-10 187.39 3.588e-13  8.945        1
11728    CLIC1       6_26 1.011e-10 186.52 2.445e-13  8.873        2
12571      C4A       6_26 2.097e-13 174.89 4.757e-16  8.295        3
10825 HLA-DRB1       6_26 0.000e+00 173.98 0.000e+00  0.697        2
11729    DDAH2       6_26 0.000e+00 173.33 0.000e+00  7.661        1
11464     MSH5       6_26 1.110e-16 150.94 2.174e-19  7.294        2
13456    HCG17       6_24 3.664e-15 128.65 6.114e-18  5.593        1
11465   MPIG6B       6_26 1.110e-16 121.05 1.743e-19  5.897        2
11430  HLA-DOA       6_26 0.000e+00 120.45 0.000e+00  7.189        1
11474     BAG6       6_26 0.000e+00 114.49 0.000e+00  7.046        3
12191  CYP21A2       6_26 0.000e+00 106.58 0.000e+00 -6.996        2
11446    FKBPL       6_26 0.000e+00 102.70 0.000e+00 -4.227        1
10942 HLA-DQA1       6_26 1.110e-16 102.32 1.473e-19  1.013        2
11443     RNF5       6_26 0.000e+00  88.32 0.000e+00  7.921        1
11440   NOTCH4       6_26 0.000e+00  88.11 0.000e+00  5.998        3
12101   SAPCD1       6_26 0.000e+00  83.62 0.000e+00  5.609        1
11723    ATF6B       6_26 0.000e+00  77.42 0.000e+00  2.835        1
5139      IER3       6_24 4.108e-15  71.95 3.834e-18  2.126        1

Genes with highest PVE

          genename region_tag susie_pip   mu2       PVE      z num_eqtl
7629         THOC7       3_43    0.9890 39.37 0.0005051 -6.686        2
12511      HLA-DMB       6_27    0.7127 51.09 0.0004723 -8.273        1
6317         CNNM2      10_66    0.5620 48.88 0.0003563 -8.991        2
11134       ZNF823      19_10    0.9688 28.25 0.0003550  5.496        2
1619        ZC3H7B      22_17    0.5514 41.17 0.0002945  4.954        3
13483 RP11-230C9.4      6_102    0.9562 21.34 0.0002647 -4.560        2
12304   AC012074.2       2_15    0.8923 21.73 0.0002515  4.623        1
491        TRAPPC3       1_22    0.7794 23.87 0.0002413  5.058        1
13323    LINC01415      18_30    0.6193 29.78 0.0002392 -5.655        1
9133       MAP3K11      11_36    0.7999 22.00 0.0002283 -4.409        1
6584         TADA1       1_82    0.7017 24.29 0.0002211 -4.185        2
108          ELAC2      17_11    0.7856 21.19 0.0002159  4.518        1
3036        LMAN2L       2_57    0.6766 24.53 0.0002153 -4.586        2
4755          SOX5      12_17    0.7373 22.17 0.0002120  4.068        1
14019        ERICD       8_92    0.6929 21.71 0.0001951 -4.064        1
6336       ARFGAP2      11_29    0.6231 23.80 0.0001924  4.839        1
3758       BHLHE41      12_18    0.5275 28.06 0.0001920  3.860        1
10221        ACOT1      14_34    0.6223 23.24 0.0001876  4.128        2
733        PPP2R5B      11_36    0.5811 23.56 0.0001776 -4.610        1
440        FAM120A       9_47    0.5782 23.09 0.0001732 -4.571        1

Genes with largest z scores

          genename region_tag susie_pip    mu2       PVE      z num_eqtl
10493       BTN3A2       6_20 2.076e-02  61.32 1.651e-05  9.057        2
6317         CNNM2      10_66 5.620e-01  48.88 3.563e-04 -8.991        2
11472         APOM       6_26 1.476e-10 187.39 3.588e-13  8.945        1
11728        CLIC1       6_26 1.011e-10 186.52 2.445e-13  8.873        2
12571          C4A       6_26 2.097e-13 174.89 4.757e-16  8.295        3
12511      HLA-DMB       6_27 7.127e-01  51.09 4.723e-04 -8.273        1
7067       ZSCAN12       6_22 8.691e-03  45.73 5.155e-06 -8.039        1
11443         RNF5       6_26 0.000e+00  88.32 0.000e+00  7.921        1
11729        DDAH2       6_26 0.000e+00 173.33 0.000e+00  7.661        1
13051 RP11-490G2.2       1_60 1.833e-02  46.92 1.116e-05  7.551        1
2871        PRSS16       6_21 2.662e-02  31.60 1.091e-05 -7.550        1
11464         MSH5       6_26 1.110e-16 150.94 2.174e-19  7.294        2
11430      HLA-DOA       6_26 0.000e+00 120.45 0.000e+00  7.189        1
11474         BAG6       6_26 0.000e+00 114.49 0.000e+00  7.046        3
12191      CYP21A2       6_26 0.000e+00 106.58 0.000e+00 -6.996        2
12308      ZSCAN31       6_22 1.708e-02  33.77 7.483e-06 -6.742        2
7629         THOC7       3_43 9.890e-01  39.37 5.051e-04 -6.686        2
4032         XRCC3      14_54 8.495e-02  39.78 4.383e-05  6.526        1
10988      ZSCAN26       6_22 8.723e-03  38.70 4.379e-06  6.435        3
11486       CCHCR1       6_25 8.454e-03  28.78 3.156e-06 -6.298        2

Comparing z scores and PIPs

[1] 0.006917

GO enrichment analysis for genes with PIP>0.5

#number of genes for gene set enrichment
length(genes)
[1] 23
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"

                                                                    Term
1 endoplasmic reticulum to Golgi vesicle-mediated transport (GO:0006888)
  Overlap Adjusted.P.value                        Genes
1   4/185         0.007218 TRAPPC3;LMAN2L;ARFGAP2;TMED4
[1] "GO_Cellular_Component_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)

DisGeNET enrichment analysis for genes with PIP>0.5

                                        Description      FDR Ratio BgRatio
20                                     Spasmophilia 0.005635   1/8  1/9703
23                                           Tetany 0.005635   1/8  1/9703
30                                 Tetany, Neonatal 0.005635   1/8  1/9703
55                                        Tetanilla 0.005635   1/8  1/9703
65                          HYPOMAGNESEMIA 6, RENAL 0.005635   1/8  1/9703
68                   PROSTATE CANCER, HEREDITARY, 2 0.005635   1/8  1/9703
70 COMBINED OXIDATIVE PHOSPHORYLATION DEFICIENCY 17 0.005635   1/8  1/9703
73       MENTAL RETARDATION, AUTOSOMAL RECESSIVE 52 0.005635   1/8  1/9703
74                            LAMB-SHAFFER SYNDROME 0.005635   1/8  1/9703
75 HYPOMAGNESEMIA, SEIZURES, AND MENTAL RETARDATION 0.005635   1/8  1/9703

WebGestalt enrichment analysis for genes with PIP>0.5

Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL

PIP Manhattan Plot

Warning: 'timedatectl' indicates the non-existent timezone name 'n/a'
Warning: Your system is mis-configured: '/etc/localtime' is not a symlink
Warning: It is strongly recommended to set envionment variable TZ to 'America/
Chicago' (or equivalent)

Sensitivity, specificity and precision for silver standard genes

#number of genes in known annotations
print(length(known_annotations))
[1] 130
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 62
#significance threshold for TWAS
print(sig_thresh)
[1] 4.587
#number of ctwas genes
length(ctwas_genes)
[1] 4
#number of TWAS genes
length(twas_genes)
[1] 77
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
          genename region_tag susie_pip   mu2       PVE     z num_eqtl
13483 RP11-230C9.4      6_102    0.9562 21.34 0.0002647 -4.56        2
#sensitivity / recall
print(sensitivity)
  ctwas    TWAS 
0.01538 0.05385 
#specificity
print(specificity)
 ctwas   TWAS 
0.9998 0.9937 
#precision / PPV
print(precision)
  ctwas    TWAS 
0.50000 0.09091 

cTWAS is more precise than TWAS in distinguishing silver standard and bystander genes

#number of genes in known annotations (with imputed expression)
print(length(known_annotations))
[1] 62
#number of bystander genes (with imputed expression)
print(length(unrelated_genes))
[1] 790
#subset results to genes in known annotations or bystanders
ctwas_gene_res_subset <- ctwas_gene_res[ctwas_gene_res$genename %in% c(known_annotations, unrelated_genes),]

#assign ctwas and TWAS genes
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

#significance threshold for TWAS
print(sig_thresh)
[1] 4.587
#number of ctwas genes (in known annotations or bystanders)
length(ctwas_genes)
[1] 2
#number of TWAS genes (in known annotations or bystanders)
length(twas_genes)
[1] 17
#sensitivity / recall
sensitivity
  ctwas    TWAS 
0.03226 0.11290 
#specificity / (1 - False Positive Rate)
specificity
 ctwas   TWAS 
1.0000 0.9873 
#precision / PPV / (1 - False Discovery Rate)
precision
 ctwas   TWAS 
1.0000 0.4118 

pip_range <- (0:1000)/1000
sensitivity <- rep(NA, length(pip_range))
specificity <- rep(NA, length(pip_range))

for (index in 1:length(pip_range)){
  pip <- pip_range[index]
  ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>=pip]
  sensitivity[index] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
}

plot(1-specificity, sensitivity, type="l", xlim=c(0,1), ylim=c(0,1), main="", xlab="1 - Specificity", ylab="Sensitivity")
title(expression("ROC Curve for cTWAS (black) and TWAS (" * phantom("red") * ")"))
title(expression(phantom("ROC Curve for cTWAS (black) and TWAS (") * "red" * phantom(")")), col.main="red")

sig_thresh_range <- seq(from=0, to=max(abs(ctwas_gene_res_subset$z)), length.out=length(pip_range))

for (index in 1:length(sig_thresh_range)){
  sig_thresh_plot <- sig_thresh_range[index]
  twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>=sig_thresh_plot]
  sensitivity[index] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
}

lines(1-specificity, sensitivity, xlim=c(0,1), ylim=c(0,1), col="red", lty=1)

abline(a=0,b=1,lty=3)

#add previously computed points from the analysis
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

points(1-specificity_plot["ctwas"], sensitivity_plot["ctwas"], pch=21, bg="black")
points(1-specificity_plot["TWAS"], sensitivity_plot["TWAS"], pch=21, bg="red")

Undetected silver standard genes have low TWAS z-scores or stronger signal from nearby variants

#table of outcomes for silver standard genes
-sort(-table(silver_standard_case))
silver_standard_case
          Not Imputed Insignificant z-score         Nearby SNP(s) 
                   68                    55                     5 
 Detected (PIP > 0.8) 
                    2 
#show inconclusive genes
silver_standard_case[silver_standard_case=="Inconclusive"]
named character(0)


sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] GenomicRanges_1.36.1 GenomeInfoDb_1.20.0  IRanges_2.18.1      
 [4] S4Vectors_0.22.1     BiocGenerics_0.30.0  biomaRt_2.40.1      
 [7] readxl_1.3.1         forcats_0.5.1        stringr_1.4.0       
[10] dplyr_1.0.7          purrr_0.3.4          readr_2.1.1         
[13] tidyr_1.1.4          tidyverse_1.3.1      tibble_3.1.6        
[16] WebGestaltR_0.4.4    disgenet2r_0.99.2    enrichR_3.0         
[19] cowplot_1.0.0        ggplot2_3.3.5        workflowr_1.7.0     

loaded via a namespace (and not attached):
  [1] ggbeeswarm_0.6.0       colorspace_2.0-2       rjson_0.2.20          
  [4] ellipsis_0.3.2         rprojroot_2.0.2        XVector_0.24.0        
  [7] fs_1.5.2               rstudioapi_0.13        farver_2.1.0          
 [10] ggrepel_0.9.1          bit64_4.0.5            AnnotationDbi_1.46.0  
 [13] fansi_1.0.2            lubridate_1.8.0        xml2_1.3.3            
 [16] codetools_0.2-16       doParallel_1.0.17      cachem_1.0.6          
 [19] knitr_1.36             jsonlite_1.7.2         apcluster_1.4.8       
 [22] Cairo_1.5-12.2         broom_0.7.10           dbplyr_2.1.1          
 [25] compiler_3.6.1         httr_1.4.2             backports_1.4.1       
 [28] assertthat_0.2.1       Matrix_1.2-18          fastmap_1.1.0         
 [31] cli_3.1.0              later_0.8.0            prettyunits_1.1.1     
 [34] htmltools_0.5.2        tools_3.6.1            igraph_1.2.10         
 [37] GenomeInfoDbData_1.2.1 gtable_0.3.0           glue_1.6.2            
 [40] reshape2_1.4.4         doRNG_1.8.2            Rcpp_1.0.8            
 [43] Biobase_2.44.0         cellranger_1.1.0       jquerylib_0.1.4       
 [46] vctrs_0.3.8            svglite_1.2.2          iterators_1.0.14      
 [49] xfun_0.29              ps_1.6.0               rvest_1.0.2           
 [52] lifecycle_1.0.1        rngtools_1.5.2         XML_3.99-0.3          
 [55] zlibbioc_1.30.0        getPass_0.2-2          scales_1.1.1          
 [58] vroom_1.5.7            hms_1.1.1              promises_1.0.1        
 [61] yaml_2.2.1             curl_4.3.2             memoise_2.0.1         
 [64] ggrastr_1.0.1          gdtools_0.1.9          stringi_1.7.6         
 [67] RSQLite_2.2.8          highr_0.9              foreach_1.5.2         
 [70] rlang_1.0.1            pkgconfig_2.0.3        bitops_1.0-7          
 [73] evaluate_0.14          lattice_0.20-38        labeling_0.4.2        
 [76] bit_4.0.4              processx_3.5.2         tidyselect_1.1.1      
 [79] plyr_1.8.6             magrittr_2.0.2         R6_2.5.1              
 [82] generics_0.1.1         DBI_1.1.2              pillar_1.6.4          
 [85] haven_2.4.3            whisker_0.3-2          withr_2.4.3           
 [88] RCurl_1.98-1.5         modelr_0.1.8           crayon_1.5.0          
 [91] utf8_1.2.2             tzdb_0.2.0             rmarkdown_2.11        
 [94] progress_1.2.2         grid_3.6.1             data.table_1.14.2     
 [97] blob_1.2.2             callr_3.7.0            git2r_0.26.1          
[100] reprex_2.0.1           digest_0.6.29          httpuv_1.5.1          
[103] munsell_0.5.0          beeswarm_0.2.3         vipor_0.4.5