Last updated: 2022-03-14
Checks: 5 2
Knit directory: cTWAS_analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish
to commit the R Markdown file and build the HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20211220)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.
absolute | relative |
---|---|
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ | data |
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R | code/ctwas_config.R |
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 4c71b11. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .ipynb_checkpoints/
Ignored: data/AF/
Untracked files:
Untracked: Rplot.png
Untracked: analysis/.ipynb_checkpoints/
Untracked: analysis/SCZ_2014_EUR_Brain_Amygdala.Rmd
Untracked: analysis/SCZ_2014_EUR_Brain_Anterior_cingulate_cortex_BA24.Rmd
Untracked: analysis/SCZ_2014_EUR_Brain_Caudate_basal_ganglia.Rmd
Untracked: analysis/SCZ_2014_EUR_Brain_Cerebellar_Hemisphere.Rmd
Untracked: analysis/SCZ_2014_EUR_Brain_Cerebellum.Rmd
Untracked: analysis/SCZ_2014_EUR_Brain_Cortex.Rmd
Untracked: analysis/SCZ_2014_EUR_Brain_Frontal_Cortex_BA9.Rmd
Untracked: analysis/SCZ_2014_EUR_Brain_Hippocampus.Rmd
Untracked: analysis/SCZ_2014_EUR_Brain_Hypothalamus.Rmd
Untracked: analysis/SCZ_2014_EUR_Brain_Nucleus_accumbens_basal_ganglia.Rmd
Untracked: analysis/SCZ_2014_EUR_Brain_Putamen_basal_ganglia.Rmd
Untracked: analysis/SCZ_2014_EUR_Brain_Spinal_cord_cervical_c-1.Rmd
Untracked: analysis/SCZ_2014_EUR_Brain_Substantia_nigra.Rmd
Untracked: analysis/SCZ_2020_Brain_Cortex.Rmd
Untracked: analysis/SCZ_2020_Brain_Frontal_Cortex_BA9.Rmd
Untracked: analysis/SCZ_2020_Brain_Hypothalamus.Rmd
Untracked: analysis/SCZ_2020_Brain_Putamen_basal_ganglia.Rmd
Untracked: analysis/SCZ_Cross_Tissue_Analysis.Rmd
Untracked: code/.ipynb_checkpoints/
Untracked: code/AF_out/
Untracked: code/Autism_out/
Untracked: code/BMI_S_out/
Untracked: code/BMI_out/
Untracked: code/Glucose_out/
Untracked: code/LDL_S_out/
Untracked: code/SCZ_2014_EUR_out/
Untracked: code/SCZ_2020_out/
Untracked: code/SCZ_S_out/
Untracked: code/SCZ_out/
Untracked: code/T2D_out/
Untracked: code/ctwas_config.R
Untracked: code/mapping.R
Untracked: code/out/
Untracked: code/run_AF_analysis.sbatch
Untracked: code/run_AF_analysis.sh
Untracked: code/run_AF_ctwas_rss_LDR.R
Untracked: code/run_Autism_analysis.sbatch
Untracked: code/run_Autism_analysis.sh
Untracked: code/run_Autism_ctwas_rss_LDR.R
Untracked: code/run_BMI_analysis.sbatch
Untracked: code/run_BMI_analysis.sh
Untracked: code/run_BMI_analysis_S.sbatch
Untracked: code/run_BMI_analysis_S.sh
Untracked: code/run_BMI_ctwas_rss_LDR.R
Untracked: code/run_BMI_ctwas_rss_LDR_S.R
Untracked: code/run_Glucose_analysis.sbatch
Untracked: code/run_Glucose_analysis.sh
Untracked: code/run_Glucose_ctwas_rss_LDR.R
Untracked: code/run_LDL_analysis_S.sbatch
Untracked: code/run_LDL_analysis_S.sh
Untracked: code/run_LDL_ctwas_rss_LDR_S.R
Untracked: code/run_SCZ_2014_EUR_analysis.sbatch
Untracked: code/run_SCZ_2014_EUR_analysis.sh
Untracked: code/run_SCZ_2014_EUR_ctwas_rss_LDR.R
Untracked: code/run_SCZ_2020_analysis.sbatch
Untracked: code/run_SCZ_2020_analysis.sh
Untracked: code/run_SCZ_2020_ctwas_rss_LDR.R
Untracked: code/run_SCZ_analysis.sbatch
Untracked: code/run_SCZ_analysis.sh
Untracked: code/run_SCZ_analysis_S.sbatch
Untracked: code/run_SCZ_analysis_S.sh
Untracked: code/run_SCZ_ctwas_rss_LDR.R
Untracked: code/run_SCZ_ctwas_rss_LDR_S.R
Untracked: code/run_T2D_analysis.sbatch
Untracked: code/run_T2D_analysis.sh
Untracked: code/run_T2D_ctwas_rss_LDR.R
Untracked: code/wflow_build.R
Untracked: code/wflow_build.sbatch
Untracked: data/.ipynb_checkpoints/
Untracked: data/BMI/
Untracked: data/PGC3_SCZ_wave3_public.v2.tsv
Untracked: data/SCZ/
Untracked: data/SCZ_2014_EUR/
Untracked: data/SCZ_2020/
Untracked: data/SCZ_S/
Untracked: data/T2D/
Untracked: data/UKBB/
Untracked: data/UKBB_SNPs_Info.text
Untracked: data/gene_OMIM.txt
Untracked: data/gene_pip_0.8.txt
Untracked: data/mashr_Heart_Atrial_Appendage.db
Untracked: data/mashr_sqtl/
Untracked: data/summary_known_genes_annotations.xlsx
Untracked: data/untitled.txt
Unstaged changes:
Modified: analysis/SCZ_Brain_Amygdala.Rmd
Modified: analysis/SCZ_Brain_Anterior_cingulate_cortex_BA24.Rmd
Modified: analysis/SCZ_Brain_Caudate_basal_ganglia.Rmd
Modified: analysis/SCZ_Brain_Cerebellar_Hemisphere.Rmd
Modified: analysis/SCZ_Brain_Cerebellum.Rmd
Modified: analysis/SCZ_Brain_Cortex.Rmd
Modified: analysis/SCZ_Brain_Frontal_Cortex_BA9.Rmd
Modified: analysis/SCZ_Brain_Hippocampus.Rmd
Modified: analysis/SCZ_Brain_Hypothalamus.Rmd
Modified: analysis/SCZ_Brain_Nucleus_accumbens_basal_ganglia.Rmd
Modified: analysis/SCZ_Brain_Putamen_basal_ganglia.Rmd
Modified: analysis/SCZ_Brain_Spinal_cord_cervical_c-1.Rmd
Modified: analysis/SCZ_Brain_Substantia_nigra.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
There are no past versions. Publish this analysis with wflow_publish()
to start tracking its development.
#number of imputed weights
nrow(qclist_all)
[1] 11132
#number of imputed weights by chromosome
table(qclist_all$chr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1109 821 615 436 539 650 516 425 404 442 665 646 232 357 357 491
17 18 19 20 21 22
689 169 851 331 113 274
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 8333
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.7486
#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
gene snp
0.0102061 0.0002575
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
gene snp
7.050 8.453
#report sample size
print(sample_size)
[1] 77096
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1] 11132 7352670
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
gene snp
0.01039 0.20758
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.07017 1.67791
genename region_tag susie_pip mu2 PVE z num_eqtl
7629 THOC7 3_43 0.9890 39.37 0.0005051 -6.686 2
11134 ZNF823 19_10 0.9688 28.25 0.0003550 5.496 2
13483 RP11-230C9.4 6_102 0.9562 21.34 0.0002647 -4.560 2
12304 AC012074.2 2_15 0.8923 21.73 0.0002515 4.623 1
9133 MAP3K11 11_36 0.7999 22.00 0.0002283 -4.409 1
108 ELAC2 17_11 0.7856 21.19 0.0002159 4.518 1
491 TRAPPC3 1_22 0.7794 23.87 0.0002413 5.058 1
4755 SOX5 12_17 0.7373 22.17 0.0002120 4.068 1
12511 HLA-DMB 6_27 0.7127 51.09 0.0004723 -8.273 1
6584 TADA1 1_82 0.7017 24.29 0.0002211 -4.185 2
14019 ERICD 8_92 0.6929 21.71 0.0001951 -4.064 1
3036 LMAN2L 2_57 0.6766 24.53 0.0002153 -4.586 2
6336 ARFGAP2 11_29 0.6231 23.80 0.0001924 4.839 1
10221 ACOT1 14_34 0.6223 23.24 0.0001876 4.128 2
13323 LINC01415 18_30 0.6193 29.78 0.0002392 -5.655 1
733 PPP2R5B 11_36 0.5811 23.56 0.0001776 -4.610 1
440 FAM120A 9_47 0.5782 23.09 0.0001732 -4.571 1
6317 CNNM2 10_66 0.5620 48.88 0.0003563 -8.991 2
14039 EBLN3P 9_29 0.5564 21.65 0.0001562 -4.442 1
7965 GTF2A1 14_39 0.5533 20.67 0.0001484 -4.376 1
genename region_tag susie_pip mu2 PVE z num_eqtl
6869 MMP16 8_63 0.000e+00 504.15 0.000e+00 3.645 1
2963 PCCB 3_84 0.000e+00 200.91 0.000e+00 -2.836 2
11472 APOM 6_26 1.476e-10 187.39 3.588e-13 8.945 1
11728 CLIC1 6_26 1.011e-10 186.52 2.445e-13 8.873 2
12571 C4A 6_26 2.097e-13 174.89 4.757e-16 8.295 3
10825 HLA-DRB1 6_26 0.000e+00 173.98 0.000e+00 0.697 2
11729 DDAH2 6_26 0.000e+00 173.33 0.000e+00 7.661 1
11464 MSH5 6_26 1.110e-16 150.94 2.174e-19 7.294 2
13456 HCG17 6_24 3.664e-15 128.65 6.114e-18 5.593 1
11465 MPIG6B 6_26 1.110e-16 121.05 1.743e-19 5.897 2
11430 HLA-DOA 6_26 0.000e+00 120.45 0.000e+00 7.189 1
11474 BAG6 6_26 0.000e+00 114.49 0.000e+00 7.046 3
12191 CYP21A2 6_26 0.000e+00 106.58 0.000e+00 -6.996 2
11446 FKBPL 6_26 0.000e+00 102.70 0.000e+00 -4.227 1
10942 HLA-DQA1 6_26 1.110e-16 102.32 1.473e-19 1.013 2
11443 RNF5 6_26 0.000e+00 88.32 0.000e+00 7.921 1
11440 NOTCH4 6_26 0.000e+00 88.11 0.000e+00 5.998 3
12101 SAPCD1 6_26 0.000e+00 83.62 0.000e+00 5.609 1
11723 ATF6B 6_26 0.000e+00 77.42 0.000e+00 2.835 1
5139 IER3 6_24 4.108e-15 71.95 3.834e-18 2.126 1
genename region_tag susie_pip mu2 PVE z num_eqtl
7629 THOC7 3_43 0.9890 39.37 0.0005051 -6.686 2
12511 HLA-DMB 6_27 0.7127 51.09 0.0004723 -8.273 1
6317 CNNM2 10_66 0.5620 48.88 0.0003563 -8.991 2
11134 ZNF823 19_10 0.9688 28.25 0.0003550 5.496 2
1619 ZC3H7B 22_17 0.5514 41.17 0.0002945 4.954 3
13483 RP11-230C9.4 6_102 0.9562 21.34 0.0002647 -4.560 2
12304 AC012074.2 2_15 0.8923 21.73 0.0002515 4.623 1
491 TRAPPC3 1_22 0.7794 23.87 0.0002413 5.058 1
13323 LINC01415 18_30 0.6193 29.78 0.0002392 -5.655 1
9133 MAP3K11 11_36 0.7999 22.00 0.0002283 -4.409 1
6584 TADA1 1_82 0.7017 24.29 0.0002211 -4.185 2
108 ELAC2 17_11 0.7856 21.19 0.0002159 4.518 1
3036 LMAN2L 2_57 0.6766 24.53 0.0002153 -4.586 2
4755 SOX5 12_17 0.7373 22.17 0.0002120 4.068 1
14019 ERICD 8_92 0.6929 21.71 0.0001951 -4.064 1
6336 ARFGAP2 11_29 0.6231 23.80 0.0001924 4.839 1
3758 BHLHE41 12_18 0.5275 28.06 0.0001920 3.860 1
10221 ACOT1 14_34 0.6223 23.24 0.0001876 4.128 2
733 PPP2R5B 11_36 0.5811 23.56 0.0001776 -4.610 1
440 FAM120A 9_47 0.5782 23.09 0.0001732 -4.571 1
genename region_tag susie_pip mu2 PVE z num_eqtl
10493 BTN3A2 6_20 2.076e-02 61.32 1.651e-05 9.057 2
6317 CNNM2 10_66 5.620e-01 48.88 3.563e-04 -8.991 2
11472 APOM 6_26 1.476e-10 187.39 3.588e-13 8.945 1
11728 CLIC1 6_26 1.011e-10 186.52 2.445e-13 8.873 2
12571 C4A 6_26 2.097e-13 174.89 4.757e-16 8.295 3
12511 HLA-DMB 6_27 7.127e-01 51.09 4.723e-04 -8.273 1
7067 ZSCAN12 6_22 8.691e-03 45.73 5.155e-06 -8.039 1
11443 RNF5 6_26 0.000e+00 88.32 0.000e+00 7.921 1
11729 DDAH2 6_26 0.000e+00 173.33 0.000e+00 7.661 1
13051 RP11-490G2.2 1_60 1.833e-02 46.92 1.116e-05 7.551 1
2871 PRSS16 6_21 2.662e-02 31.60 1.091e-05 -7.550 1
11464 MSH5 6_26 1.110e-16 150.94 2.174e-19 7.294 2
11430 HLA-DOA 6_26 0.000e+00 120.45 0.000e+00 7.189 1
11474 BAG6 6_26 0.000e+00 114.49 0.000e+00 7.046 3
12191 CYP21A2 6_26 0.000e+00 106.58 0.000e+00 -6.996 2
12308 ZSCAN31 6_22 1.708e-02 33.77 7.483e-06 -6.742 2
7629 THOC7 3_43 9.890e-01 39.37 5.051e-04 -6.686 2
4032 XRCC3 14_54 8.495e-02 39.78 4.383e-05 6.526 1
10988 ZSCAN26 6_22 8.723e-03 38.70 4.379e-06 6.435 3
11486 CCHCR1 6_25 8.454e-03 28.78 3.156e-06 -6.298 2
[1] 0.006917
#number of genes for gene set enrichment
length(genes)
[1] 23
Uploading data to Enrichr... Done.
Querying GO_Biological_Process_2021... Done.
Querying GO_Cellular_Component_2021... Done.
Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"
Term
1 endoplasmic reticulum to Golgi vesicle-mediated transport (GO:0006888)
Overlap Adjusted.P.value Genes
1 4/185 0.007218 TRAPPC3;LMAN2L;ARFGAP2;TMED4
[1] "GO_Cellular_Component_2021"
[1] Term Overlap Adjusted.P.value Genes
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"
[1] Term Overlap Adjusted.P.value Genes
<0 rows> (or 0-length row.names)
Description FDR Ratio BgRatio
20 Spasmophilia 0.005635 1/8 1/9703
23 Tetany 0.005635 1/8 1/9703
30 Tetany, Neonatal 0.005635 1/8 1/9703
55 Tetanilla 0.005635 1/8 1/9703
65 HYPOMAGNESEMIA 6, RENAL 0.005635 1/8 1/9703
68 PROSTATE CANCER, HEREDITARY, 2 0.005635 1/8 1/9703
70 COMBINED OXIDATIVE PHOSPHORYLATION DEFICIENCY 17 0.005635 1/8 1/9703
73 MENTAL RETARDATION, AUTOSOMAL RECESSIVE 52 0.005635 1/8 1/9703
74 LAMB-SHAFFER SYNDROME 0.005635 1/8 1/9703
75 HYPOMAGNESEMIA, SEIZURES, AND MENTAL RETARDATION 0.005635 1/8 1/9703
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL
Warning: 'timedatectl' indicates the non-existent timezone name 'n/a'
Warning: Your system is mis-configured: '/etc/localtime' is not a symlink
Warning: It is strongly recommended to set envionment variable TZ to 'America/
Chicago' (or equivalent)
#number of genes in known annotations
print(length(known_annotations))
[1] 130
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 62
#significance threshold for TWAS
print(sig_thresh)
[1] 4.587
#number of ctwas genes
length(ctwas_genes)
[1] 4
#number of TWAS genes
length(twas_genes)
[1] 77
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
genename region_tag susie_pip mu2 PVE z num_eqtl
13483 RP11-230C9.4 6_102 0.9562 21.34 0.0002647 -4.56 2
#sensitivity / recall
print(sensitivity)
ctwas TWAS
0.01538 0.05385
#specificity
print(specificity)
ctwas TWAS
0.9998 0.9937
#precision / PPV
print(precision)
ctwas TWAS
0.50000 0.09091
#number of genes in known annotations (with imputed expression)
print(length(known_annotations))
[1] 62
#number of bystander genes (with imputed expression)
print(length(unrelated_genes))
[1] 790
#subset results to genes in known annotations or bystanders
ctwas_gene_res_subset <- ctwas_gene_res[ctwas_gene_res$genename %in% c(known_annotations, unrelated_genes),]
#assign ctwas and TWAS genes
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]
#significance threshold for TWAS
print(sig_thresh)
[1] 4.587
#number of ctwas genes (in known annotations or bystanders)
length(ctwas_genes)
[1] 2
#number of TWAS genes (in known annotations or bystanders)
length(twas_genes)
[1] 17
#sensitivity / recall
sensitivity
ctwas TWAS
0.03226 0.11290
#specificity / (1 - False Positive Rate)
specificity
ctwas TWAS
1.0000 0.9873
#precision / PPV / (1 - False Discovery Rate)
precision
ctwas TWAS
1.0000 0.4118
pip_range <- (0:1000)/1000
sensitivity <- rep(NA, length(pip_range))
specificity <- rep(NA, length(pip_range))
for (index in 1:length(pip_range)){
pip <- pip_range[index]
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>=pip]
sensitivity[index] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
specificity[index] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
}
plot(1-specificity, sensitivity, type="l", xlim=c(0,1), ylim=c(0,1), main="", xlab="1 - Specificity", ylab="Sensitivity")
title(expression("ROC Curve for cTWAS (black) and TWAS (" * phantom("red") * ")"))
title(expression(phantom("ROC Curve for cTWAS (black) and TWAS (") * "red" * phantom(")")), col.main="red")
sig_thresh_range <- seq(from=0, to=max(abs(ctwas_gene_res_subset$z)), length.out=length(pip_range))
for (index in 1:length(sig_thresh_range)){
sig_thresh_plot <- sig_thresh_range[index]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>=sig_thresh_plot]
sensitivity[index] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
specificity[index] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
}
lines(1-specificity, sensitivity, xlim=c(0,1), ylim=c(0,1), col="red", lty=1)
abline(a=0,b=1,lty=3)
#add previously computed points from the analysis
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]
points(1-specificity_plot["ctwas"], sensitivity_plot["ctwas"], pch=21, bg="black")
points(1-specificity_plot["TWAS"], sensitivity_plot["TWAS"], pch=21, bg="red")
#table of outcomes for silver standard genes
-sort(-table(silver_standard_case))
silver_standard_case
Not Imputed Insignificant z-score Nearby SNP(s)
68 55 5
Detected (PIP > 0.8)
2
#show inconclusive genes
silver_standard_case[silver_standard_case=="Inconclusive"]
named character(0)
sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)
Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] parallel stats4 stats graphics grDevices utils datasets
[8] methods base
other attached packages:
[1] GenomicRanges_1.36.1 GenomeInfoDb_1.20.0 IRanges_2.18.1
[4] S4Vectors_0.22.1 BiocGenerics_0.30.0 biomaRt_2.40.1
[7] readxl_1.3.1 forcats_0.5.1 stringr_1.4.0
[10] dplyr_1.0.7 purrr_0.3.4 readr_2.1.1
[13] tidyr_1.1.4 tidyverse_1.3.1 tibble_3.1.6
[16] WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0
[19] cowplot_1.0.0 ggplot2_3.3.5 workflowr_1.7.0
loaded via a namespace (and not attached):
[1] ggbeeswarm_0.6.0 colorspace_2.0-2 rjson_0.2.20
[4] ellipsis_0.3.2 rprojroot_2.0.2 XVector_0.24.0
[7] fs_1.5.2 rstudioapi_0.13 farver_2.1.0
[10] ggrepel_0.9.1 bit64_4.0.5 AnnotationDbi_1.46.0
[13] fansi_1.0.2 lubridate_1.8.0 xml2_1.3.3
[16] codetools_0.2-16 doParallel_1.0.17 cachem_1.0.6
[19] knitr_1.36 jsonlite_1.7.2 apcluster_1.4.8
[22] Cairo_1.5-12.2 broom_0.7.10 dbplyr_2.1.1
[25] compiler_3.6.1 httr_1.4.2 backports_1.4.1
[28] assertthat_0.2.1 Matrix_1.2-18 fastmap_1.1.0
[31] cli_3.1.0 later_0.8.0 prettyunits_1.1.1
[34] htmltools_0.5.2 tools_3.6.1 igraph_1.2.10
[37] GenomeInfoDbData_1.2.1 gtable_0.3.0 glue_1.6.2
[40] reshape2_1.4.4 doRNG_1.8.2 Rcpp_1.0.8
[43] Biobase_2.44.0 cellranger_1.1.0 jquerylib_0.1.4
[46] vctrs_0.3.8 svglite_1.2.2 iterators_1.0.14
[49] xfun_0.29 ps_1.6.0 rvest_1.0.2
[52] lifecycle_1.0.1 rngtools_1.5.2 XML_3.99-0.3
[55] zlibbioc_1.30.0 getPass_0.2-2 scales_1.1.1
[58] vroom_1.5.7 hms_1.1.1 promises_1.0.1
[61] yaml_2.2.1 curl_4.3.2 memoise_2.0.1
[64] ggrastr_1.0.1 gdtools_0.1.9 stringi_1.7.6
[67] RSQLite_2.2.8 highr_0.9 foreach_1.5.2
[70] rlang_1.0.1 pkgconfig_2.0.3 bitops_1.0-7
[73] evaluate_0.14 lattice_0.20-38 labeling_0.4.2
[76] bit_4.0.4 processx_3.5.2 tidyselect_1.1.1
[79] plyr_1.8.6 magrittr_2.0.2 R6_2.5.1
[82] generics_0.1.1 DBI_1.1.2 pillar_1.6.4
[85] haven_2.4.3 whisker_0.3-2 withr_2.4.3
[88] RCurl_1.98-1.5 modelr_0.1.8 crayon_1.5.0
[91] utf8_1.2.2 tzdb_0.2.0 rmarkdown_2.11
[94] progress_1.2.2 grid_3.6.1 data.table_1.14.2
[97] blob_1.2.2 callr_3.7.0 git2r_0.26.1
[100] reprex_2.0.1 digest_0.6.29 httpuv_1.5.1
[103] munsell_0.5.0 beeswarm_0.2.3 vipor_0.4.5