Last updated: 2022-03-14

Checks: 5 2

Knit directory: cTWAS_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ data
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R code/ctwas_config.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 4c71b11. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .ipynb_checkpoints/
    Ignored:    data/AF/

Untracked files:
    Untracked:  Rplot.png
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  analysis/SCZ_2014_EUR_Brain_Amygdala.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Anterior_cingulate_cortex_BA24.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Caudate_basal_ganglia.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Cerebellar_Hemisphere.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Cerebellum.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Cortex.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Frontal_Cortex_BA9.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Hippocampus.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Hypothalamus.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Nucleus_accumbens_basal_ganglia.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Putamen_basal_ganglia.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Spinal_cord_cervical_c-1.Rmd
    Untracked:  analysis/SCZ_2014_EUR_Brain_Substantia_nigra.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Cortex.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Frontal_Cortex_BA9.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Hypothalamus.Rmd
    Untracked:  analysis/SCZ_2020_Brain_Putamen_basal_ganglia.Rmd
    Untracked:  analysis/SCZ_Cross_Tissue_Analysis.Rmd
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/AF_out/
    Untracked:  code/Autism_out/
    Untracked:  code/BMI_S_out/
    Untracked:  code/BMI_out/
    Untracked:  code/Glucose_out/
    Untracked:  code/LDL_S_out/
    Untracked:  code/SCZ_2014_EUR_out/
    Untracked:  code/SCZ_2020_out/
    Untracked:  code/SCZ_S_out/
    Untracked:  code/SCZ_out/
    Untracked:  code/T2D_out/
    Untracked:  code/ctwas_config.R
    Untracked:  code/mapping.R
    Untracked:  code/out/
    Untracked:  code/run_AF_analysis.sbatch
    Untracked:  code/run_AF_analysis.sh
    Untracked:  code/run_AF_ctwas_rss_LDR.R
    Untracked:  code/run_Autism_analysis.sbatch
    Untracked:  code/run_Autism_analysis.sh
    Untracked:  code/run_Autism_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_analysis.sbatch
    Untracked:  code/run_BMI_analysis.sh
    Untracked:  code/run_BMI_analysis_S.sbatch
    Untracked:  code/run_BMI_analysis_S.sh
    Untracked:  code/run_BMI_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_ctwas_rss_LDR_S.R
    Untracked:  code/run_Glucose_analysis.sbatch
    Untracked:  code/run_Glucose_analysis.sh
    Untracked:  code/run_Glucose_ctwas_rss_LDR.R
    Untracked:  code/run_LDL_analysis_S.sbatch
    Untracked:  code/run_LDL_analysis_S.sh
    Untracked:  code/run_LDL_ctwas_rss_LDR_S.R
    Untracked:  code/run_SCZ_2014_EUR_analysis.sbatch
    Untracked:  code/run_SCZ_2014_EUR_analysis.sh
    Untracked:  code/run_SCZ_2014_EUR_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2020_analysis.sbatch
    Untracked:  code/run_SCZ_2020_analysis.sh
    Untracked:  code/run_SCZ_2020_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_analysis.sbatch
    Untracked:  code/run_SCZ_analysis.sh
    Untracked:  code/run_SCZ_analysis_S.sbatch
    Untracked:  code/run_SCZ_analysis_S.sh
    Untracked:  code/run_SCZ_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_ctwas_rss_LDR_S.R
    Untracked:  code/run_T2D_analysis.sbatch
    Untracked:  code/run_T2D_analysis.sh
    Untracked:  code/run_T2D_ctwas_rss_LDR.R
    Untracked:  code/wflow_build.R
    Untracked:  code/wflow_build.sbatch
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/BMI/
    Untracked:  data/PGC3_SCZ_wave3_public.v2.tsv
    Untracked:  data/SCZ/
    Untracked:  data/SCZ_2014_EUR/
    Untracked:  data/SCZ_2020/
    Untracked:  data/SCZ_S/
    Untracked:  data/T2D/
    Untracked:  data/UKBB/
    Untracked:  data/UKBB_SNPs_Info.text
    Untracked:  data/gene_OMIM.txt
    Untracked:  data/gene_pip_0.8.txt
    Untracked:  data/mashr_Heart_Atrial_Appendage.db
    Untracked:  data/mashr_sqtl/
    Untracked:  data/summary_known_genes_annotations.xlsx
    Untracked:  data/untitled.txt

Unstaged changes:
    Modified:   analysis/SCZ_Brain_Amygdala.Rmd
    Modified:   analysis/SCZ_Brain_Anterior_cingulate_cortex_BA24.Rmd
    Modified:   analysis/SCZ_Brain_Caudate_basal_ganglia.Rmd
    Modified:   analysis/SCZ_Brain_Cerebellar_Hemisphere.Rmd
    Modified:   analysis/SCZ_Brain_Cerebellum.Rmd
    Modified:   analysis/SCZ_Brain_Cortex.Rmd
    Modified:   analysis/SCZ_Brain_Frontal_Cortex_BA9.Rmd
    Modified:   analysis/SCZ_Brain_Hippocampus.Rmd
    Modified:   analysis/SCZ_Brain_Hypothalamus.Rmd
    Modified:   analysis/SCZ_Brain_Nucleus_accumbens_basal_ganglia.Rmd
    Modified:   analysis/SCZ_Brain_Putamen_basal_ganglia.Rmd
    Modified:   analysis/SCZ_Brain_Spinal_cord_cervical_c-1.Rmd
    Modified:   analysis/SCZ_Brain_Substantia_nigra.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


Weight QC

#number of imputed weights
nrow(qclist_all)
[1] 10552
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
1030  748  613  403  500  608  511  407  386  416  633  601  216  346  369  482 
  17   18   19   20   21   22 
 610  161  797  322  120  273 
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 8168
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.7741

Check convergence of parameters

#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
     gene       snp 
0.0151047 0.0002559 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
  gene    snp 
10.065  8.056 
#report sample size
print(sample_size)
[1] 77096
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]   10552 7352670
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
   gene     snp 
0.02081 0.19657 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.08811 1.70775

Genes with highest PIPs

          genename region_tag susie_pip   mu2       PVE      z num_eqtl
10719       ZNF823      19_10    0.9904 30.32 0.0003895  5.560        2
13100   KB-226F1.2       22_6    0.9823 27.54 0.0003509 -3.296        2
12952 RP11-230C9.4      6_102    0.9395 21.99 0.0002680 -4.543        2
11817   AC012074.2       2_15    0.9344 22.01 0.0002668  4.623        1
472        TRAPPC3       1_22    0.9286 24.84 0.0002992  5.058        1
2969         SF3B1      2_117    0.9225 44.74 0.0005354  6.784        1
426        FAM120A       9_47    0.8408 23.38 0.0002550 -4.706        2
3999        SPECC1      17_16    0.7912 21.49 0.0002205  4.167        1
9103        DIRAS1       19_3    0.7721 20.80 0.0002083  4.285        1
2838        PDCD10      3_103    0.7656 19.76 0.0001962 -4.030        1
2898        LMAN2L       2_57    0.7652 22.97 0.0002279 -4.528        2
10112      TMEM222       1_19    0.7426 22.15 0.0002133  3.902        1
11362       UBXN2B       8_45    0.7097 20.89 0.0001923 -3.891        2
2963        KCNJ13      2_137    0.7077 37.22 0.0003417  6.658        1
10953   LIN28B-AS1       6_70    0.7052 23.55 0.0002154 -4.732        2
3590       BHLHE41      12_18    0.7035 22.76 0.0002077  3.860        1
6095       ARFGAP2      11_29    0.6638 24.36 0.0002098  4.839        1
13182       RBAKDN        7_6    0.6448 20.65 0.0001727  3.931        2
1043         PLOD1        1_9    0.6179 23.42 0.0001877 -3.849        1
2281        ERLIN1      10_64    0.6034 22.23 0.0001739  4.370        1

Genes with largest effect sizes

         genename region_tag susie_pip    mu2       PVE      z num_eqtl
11773   HIST1H2BN       6_21 1.507e-06 953.07 1.863e-08 10.773        1
6614        MMP16       8_63 0.000e+00 502.03 0.000e+00  3.648        1
8914         MSL2       3_84 2.573e-07 436.85 1.458e-09  5.847        2
13060 RP1-86C11.7       6_21 2.831e-12 415.62 1.526e-14  9.033        1
10534    HLA-DQA1       6_26 1.521e-14 214.18 4.226e-17  3.448        1
11039        APOM       6_26 1.015e-08 199.46 2.626e-11  8.945        1
11035     ABHD16A       6_26 8.414e-09 199.15 2.174e-11  8.934        1
12066         C4A       6_26 2.844e-10 195.76 7.221e-13  8.475        2
11277       DDAH2       6_26 0.000e+00 185.37 0.000e+00  7.661        1
3720    HIST1H2BJ       6_21 0.000e+00 145.75 0.000e+00  1.674        1
2830         PCCB       3_84 0.000e+00 142.15 0.000e+00 -4.361        1
11041        BAG6       6_26 0.000e+00 130.09 0.000e+00  7.267        3
811       PPP2R3A       3_84 0.000e+00 128.74 0.000e+00  4.119        1
10416    HLA-DRB1       6_26 0.000e+00 124.02 0.000e+00  1.172        2
2147         MPP6       7_21 1.985e-04 116.21 2.992e-07 -3.302        1
11014       FKBPL       6_26 0.000e+00 115.58 0.000e+00 -3.789        1
11272       ATF6B       6_26 0.000e+00 115.58 0.000e+00  3.789        1
11710     CYP21A2       6_26 0.000e+00 110.02 0.000e+00 -6.852        2
11008      NOTCH4       6_26 0.000e+00  77.22 0.000e+00  6.098        1
11010        AGER       6_26 0.000e+00  74.57 0.000e+00 -2.627        1

Genes with highest PVE

          genename region_tag susie_pip   mu2       PVE      z num_eqtl
2969         SF3B1      2_117    0.9225 44.74 0.0005354  6.784        1
10719       ZNF823      19_10    0.9904 30.32 0.0003895  5.560        2
13100   KB-226F1.2       22_6    0.9823 27.54 0.0003509 -3.296        2
2963        KCNJ13      2_137    0.7077 37.22 0.0003417  6.658        1
472        TRAPPC3       1_22    0.9286 24.84 0.0002992  5.058        1
2524           MDK      11_28    0.6021 38.29 0.0002991 -6.344        1
12952 RP11-230C9.4      6_102    0.9395 21.99 0.0002680 -4.543        2
11817   AC012074.2       2_15    0.9344 22.01 0.0002668  4.623        1
426        FAM120A       9_47    0.8408 23.38 0.0002550 -4.706        2
455       MPHOSPH9      12_75    0.4389 41.84 0.0002382  6.650        1
2898        LMAN2L       2_57    0.7652 22.97 0.0002279 -4.528        2
3999        SPECC1      17_16    0.7912 21.49 0.0002205  4.167        1
10953   LIN28B-AS1       6_70    0.7052 23.55 0.0002154 -4.732        2
10112      TMEM222       1_19    0.7426 22.15 0.0002133  3.902        1
6095       ARFGAP2      11_29    0.6638 24.36 0.0002098  4.839        1
9103        DIRAS1       19_3    0.7721 20.80 0.0002083  4.285        1
3590       BHLHE41      12_18    0.7035 22.76 0.0002077  3.860        1
5316         FURIN      15_42    0.4872 32.56 0.0002058 -5.701        1
1540         CHADL      22_17    0.4006 39.47 0.0002051  4.950        1
2838        PDCD10      3_103    0.7656 19.76 0.0001962 -4.030        1

Genes with largest z scores

          genename region_tag susie_pip    mu2       PVE      z num_eqtl
11773    HIST1H2BN       6_21 1.507e-06 953.07 1.863e-08 10.773        1
13060  RP1-86C11.7       6_21 2.831e-12 415.62 1.526e-14  9.033        1
11039         APOM       6_26 1.015e-08 199.46 2.626e-11  8.945        1
11035      ABHD16A       6_26 8.414e-09 199.15 2.174e-11  8.934        1
12066          C4A       6_26 2.844e-10 195.76 7.221e-13  8.475        2
6075         CNNM2      10_66 2.553e-01  41.00 1.358e-04 -7.876        1
11277        DDAH2       6_26 0.000e+00 185.37 0.000e+00  7.661        1
12530 RP11-490G2.2       1_60 2.956e-02  50.56 1.939e-05  7.551        1
11041         BAG6       6_26 0.000e+00 130.09 0.000e+00  7.267        3
11710      CYP21A2       6_26 0.000e+00 110.02 0.000e+00 -6.852        2
2969         SF3B1      2_117 9.225e-01  44.74 5.354e-04  6.784        1
2963        KCNJ13      2_137 7.077e-01  37.22 3.417e-04  6.658        1
455       MPHOSPH9      12_75 4.389e-01  41.84 2.382e-04  6.650        1
10382        NKAPL       6_22 1.720e-02  35.66 7.954e-06 -6.495        1
11051       POU5F1       6_25 7.404e-02  40.57 3.897e-05 -6.385        2
2524           MDK      11_28 6.021e-01  38.29 2.991e-04 -6.344        1
11008       NOTCH4       6_26 0.000e+00  77.22 0.000e+00  6.098        1
8984         ATG13      11_28 1.505e-01  34.68 6.773e-05 -6.084        1
9474        HARBI1      11_28 1.505e-01  34.68 6.773e-05  6.084        1
8291        INO80E      16_24 4.178e-01  34.94 1.893e-04  5.963        1

Comparing z scores and PIPs

[1] 0.006823

GO enrichment analysis for genes with PIP>0.5

#number of genes for gene set enrichment
length(genes)
[1] 27
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Cellular_Component_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)

DisGeNET enrichment analysis for genes with PIP>0.5

                                                 Description     FDR Ratio
20                                                   Measles 0.00804  1/10
59                      Snowflake vitreoretinal degeneration 0.00804  1/10
60                        Cerebral Cavernous Malformations 3 0.00804  1/10
62 HEMOLYTIC UREMIC SYNDROME, ATYPICAL, SUSCEPTIBILITY TO, 2 0.00804  1/10
64                  Familial cerebral cavernous malformation 0.00804  1/10
66                                  Nevo syndrome (disorder) 0.00804  1/10
67                             LEBER CONGENITAL AMAUROSIS 16 0.00804  1/10
74                MENTAL RETARDATION, AUTOSOMAL RECESSIVE 52 0.00804  1/10
76                SPASTIC PARAPLEGIA 62, AUTOSOMAL RECESSIVE 0.00804  1/10
77                Ehlers-Danlos syndrome kyphoscoliotic type 0.00804  1/10
   BgRatio
20  1/9703
59  1/9703
60  1/9703
62  1/9703
64  1/9703
66  1/9703
67  1/9703
74  1/9703
76  1/9703
77  1/9703

WebGestalt enrichment analysis for genes with PIP>0.5

Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL

PIP Manhattan Plot

Warning: 'timedatectl' indicates the non-existent timezone name 'n/a'
Warning: Your system is mis-configured: '/etc/localtime' is not a symlink
Warning: It is strongly recommended to set envionment variable TZ to 'America/
Chicago' (or equivalent)

Sensitivity, specificity and precision for silver standard genes

#number of genes in known annotations
print(length(known_annotations))
[1] 130
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 55
#significance threshold for TWAS
print(sig_thresh)
[1] 4.576
#number of ctwas genes
length(ctwas_genes)
[1] 7
#number of TWAS genes
length(twas_genes)
[1] 72
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
          genename region_tag susie_pip   mu2       PVE      z num_eqtl
12952 RP11-230C9.4      6_102    0.9395 21.99 0.0002680 -4.543        2
13100   KB-226F1.2       22_6    0.9823 27.54 0.0003509 -3.296        2
#sensitivity / recall
print(sensitivity)
  ctwas    TWAS 
0.01538 0.06923 
#specificity
print(specificity)
 ctwas   TWAS 
0.9995 0.9940 
#precision / PPV
print(precision)
 ctwas   TWAS 
0.2857 0.1250 

cTWAS is more precise than TWAS in distinguishing silver standard and bystander genes

#number of genes in known annotations (with imputed expression)
print(length(known_annotations))
[1] 55
#number of bystander genes (with imputed expression)
print(length(unrelated_genes))
[1] 680
#subset results to genes in known annotations or bystanders
ctwas_gene_res_subset <- ctwas_gene_res[ctwas_gene_res$genename %in% c(known_annotations, unrelated_genes),]

#assign ctwas and TWAS genes
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

#significance threshold for TWAS
print(sig_thresh)
[1] 4.576
#number of ctwas genes (in known annotations or bystanders)
length(ctwas_genes)
[1] 2
#number of TWAS genes (in known annotations or bystanders)
length(twas_genes)
[1] 22
#sensitivity / recall
sensitivity
  ctwas    TWAS 
0.03636 0.16364 
#specificity / (1 - False Positive Rate)
specificity
 ctwas   TWAS 
1.0000 0.9809 
#precision / PPV / (1 - False Discovery Rate)
precision
 ctwas   TWAS 
1.0000 0.4091 

pip_range <- (0:1000)/1000
sensitivity <- rep(NA, length(pip_range))
specificity <- rep(NA, length(pip_range))

for (index in 1:length(pip_range)){
  pip <- pip_range[index]
  ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>=pip]
  sensitivity[index] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
}

plot(1-specificity, sensitivity, type="l", xlim=c(0,1), ylim=c(0,1), main="", xlab="1 - Specificity", ylab="Sensitivity")
title(expression("ROC Curve for cTWAS (black) and TWAS (" * phantom("red") * ")"))
title(expression(phantom("ROC Curve for cTWAS (black) and TWAS (") * "red" * phantom(")")), col.main="red")

sig_thresh_range <- seq(from=0, to=max(abs(ctwas_gene_res_subset$z)), length.out=length(pip_range))

for (index in 1:length(sig_thresh_range)){
  sig_thresh_plot <- sig_thresh_range[index]
  twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>=sig_thresh_plot]
  sensitivity[index] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
}

lines(1-specificity, sensitivity, xlim=c(0,1), ylim=c(0,1), col="red", lty=1)

abline(a=0,b=1,lty=3)

#add previously computed points from the analysis
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

points(1-specificity_plot["ctwas"], sensitivity_plot["ctwas"], pch=21, bg="black")
points(1-specificity_plot["TWAS"], sensitivity_plot["TWAS"], pch=21, bg="red")

Undetected silver standard genes have low TWAS z-scores or stronger signal from nearby variants

#table of outcomes for silver standard genes
-sort(-table(silver_standard_case))
silver_standard_case
          Not Imputed Insignificant z-score         Nearby SNP(s) 
                   75                    46                     7 
 Detected (PIP > 0.8) 
                    2 
#show inconclusive genes
silver_standard_case[silver_standard_case=="Inconclusive"]
named character(0)


sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] GenomicRanges_1.36.1 GenomeInfoDb_1.20.0  IRanges_2.18.1      
 [4] S4Vectors_0.22.1     BiocGenerics_0.30.0  biomaRt_2.40.1      
 [7] readxl_1.3.1         forcats_0.5.1        stringr_1.4.0       
[10] dplyr_1.0.7          purrr_0.3.4          readr_2.1.1         
[13] tidyr_1.1.4          tidyverse_1.3.1      tibble_3.1.6        
[16] WebGestaltR_0.4.4    disgenet2r_0.99.2    enrichR_3.0         
[19] cowplot_1.0.0        ggplot2_3.3.5        workflowr_1.7.0     

loaded via a namespace (and not attached):
  [1] ggbeeswarm_0.6.0       colorspace_2.0-2       rjson_0.2.20          
  [4] ellipsis_0.3.2         rprojroot_2.0.2        XVector_0.24.0        
  [7] fs_1.5.2               rstudioapi_0.13        farver_2.1.0          
 [10] ggrepel_0.9.1          bit64_4.0.5            AnnotationDbi_1.46.0  
 [13] fansi_1.0.2            lubridate_1.8.0        xml2_1.3.3            
 [16] codetools_0.2-16       doParallel_1.0.17      cachem_1.0.6          
 [19] knitr_1.36             jsonlite_1.7.2         apcluster_1.4.8       
 [22] Cairo_1.5-12.2         broom_0.7.10           dbplyr_2.1.1          
 [25] compiler_3.6.1         httr_1.4.2             backports_1.4.1       
 [28] assertthat_0.2.1       Matrix_1.2-18          fastmap_1.1.0         
 [31] cli_3.1.0              later_0.8.0            prettyunits_1.1.1     
 [34] htmltools_0.5.2        tools_3.6.1            igraph_1.2.10         
 [37] GenomeInfoDbData_1.2.1 gtable_0.3.0           glue_1.6.2            
 [40] reshape2_1.4.4         doRNG_1.8.2            Rcpp_1.0.8            
 [43] Biobase_2.44.0         cellranger_1.1.0       jquerylib_0.1.4       
 [46] vctrs_0.3.8            svglite_1.2.2          iterators_1.0.14      
 [49] xfun_0.29              ps_1.6.0               rvest_1.0.2           
 [52] lifecycle_1.0.1        rngtools_1.5.2         XML_3.99-0.3          
 [55] zlibbioc_1.30.0        getPass_0.2-2          scales_1.1.1          
 [58] vroom_1.5.7            hms_1.1.1              promises_1.0.1        
 [61] yaml_2.2.1             curl_4.3.2             memoise_2.0.1         
 [64] ggrastr_1.0.1          gdtools_0.1.9          stringi_1.7.6         
 [67] RSQLite_2.2.8          highr_0.9              foreach_1.5.2         
 [70] rlang_1.0.1            pkgconfig_2.0.3        bitops_1.0-7          
 [73] evaluate_0.14          lattice_0.20-38        labeling_0.4.2        
 [76] bit_4.0.4              processx_3.5.2         tidyselect_1.1.1      
 [79] plyr_1.8.6             magrittr_2.0.2         R6_2.5.1              
 [82] generics_0.1.1         DBI_1.1.2              pillar_1.6.4          
 [85] haven_2.4.3            whisker_0.3-2          withr_2.4.3           
 [88] RCurl_1.98-1.5         modelr_0.1.8           crayon_1.5.0          
 [91] utf8_1.2.2             tzdb_0.2.0             rmarkdown_2.11        
 [94] progress_1.2.2         grid_3.6.1             data.table_1.14.2     
 [97] blob_1.2.2             callr_3.7.0            git2r_0.26.1          
[100] reprex_2.0.1           digest_0.6.29          httpuv_1.5.1          
[103] munsell_0.5.0          beeswarm_0.2.3         vipor_0.4.5