Last updated: 2022-03-14
Checks: 5 2
Knit directory: cTWAS_analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish
to commit the R Markdown file and build the HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20211220)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.
absolute | relative |
---|---|
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ | data |
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R | code/ctwas_config.R |
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 4c71b11. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .ipynb_checkpoints/
Ignored: data/AF/
Untracked files:
Untracked: Rplot.png
Untracked: analysis/.ipynb_checkpoints/
Untracked: analysis/SCZ_2014_EUR_Brain_Amygdala.Rmd
Untracked: analysis/SCZ_2014_EUR_Brain_Anterior_cingulate_cortex_BA24.Rmd
Untracked: analysis/SCZ_2014_EUR_Brain_Caudate_basal_ganglia.Rmd
Untracked: analysis/SCZ_2014_EUR_Brain_Cerebellar_Hemisphere.Rmd
Untracked: analysis/SCZ_2014_EUR_Brain_Cerebellum.Rmd
Untracked: analysis/SCZ_2014_EUR_Brain_Cortex.Rmd
Untracked: analysis/SCZ_2014_EUR_Brain_Frontal_Cortex_BA9.Rmd
Untracked: analysis/SCZ_2014_EUR_Brain_Hippocampus.Rmd
Untracked: analysis/SCZ_2014_EUR_Brain_Hypothalamus.Rmd
Untracked: analysis/SCZ_2014_EUR_Brain_Nucleus_accumbens_basal_ganglia.Rmd
Untracked: analysis/SCZ_2014_EUR_Brain_Putamen_basal_ganglia.Rmd
Untracked: analysis/SCZ_2014_EUR_Brain_Spinal_cord_cervical_c-1.Rmd
Untracked: analysis/SCZ_2014_EUR_Brain_Substantia_nigra.Rmd
Untracked: analysis/SCZ_2020_Brain_Cortex.Rmd
Untracked: analysis/SCZ_2020_Brain_Frontal_Cortex_BA9.Rmd
Untracked: analysis/SCZ_2020_Brain_Hypothalamus.Rmd
Untracked: analysis/SCZ_2020_Brain_Putamen_basal_ganglia.Rmd
Untracked: analysis/SCZ_Cross_Tissue_Analysis.Rmd
Untracked: code/.ipynb_checkpoints/
Untracked: code/AF_out/
Untracked: code/Autism_out/
Untracked: code/BMI_S_out/
Untracked: code/BMI_out/
Untracked: code/Glucose_out/
Untracked: code/LDL_S_out/
Untracked: code/SCZ_2014_EUR_out/
Untracked: code/SCZ_2020_out/
Untracked: code/SCZ_S_out/
Untracked: code/SCZ_out/
Untracked: code/T2D_out/
Untracked: code/ctwas_config.R
Untracked: code/mapping.R
Untracked: code/out/
Untracked: code/run_AF_analysis.sbatch
Untracked: code/run_AF_analysis.sh
Untracked: code/run_AF_ctwas_rss_LDR.R
Untracked: code/run_Autism_analysis.sbatch
Untracked: code/run_Autism_analysis.sh
Untracked: code/run_Autism_ctwas_rss_LDR.R
Untracked: code/run_BMI_analysis.sbatch
Untracked: code/run_BMI_analysis.sh
Untracked: code/run_BMI_analysis_S.sbatch
Untracked: code/run_BMI_analysis_S.sh
Untracked: code/run_BMI_ctwas_rss_LDR.R
Untracked: code/run_BMI_ctwas_rss_LDR_S.R
Untracked: code/run_Glucose_analysis.sbatch
Untracked: code/run_Glucose_analysis.sh
Untracked: code/run_Glucose_ctwas_rss_LDR.R
Untracked: code/run_LDL_analysis_S.sbatch
Untracked: code/run_LDL_analysis_S.sh
Untracked: code/run_LDL_ctwas_rss_LDR_S.R
Untracked: code/run_SCZ_2014_EUR_analysis.sbatch
Untracked: code/run_SCZ_2014_EUR_analysis.sh
Untracked: code/run_SCZ_2014_EUR_ctwas_rss_LDR.R
Untracked: code/run_SCZ_2020_analysis.sbatch
Untracked: code/run_SCZ_2020_analysis.sh
Untracked: code/run_SCZ_2020_ctwas_rss_LDR.R
Untracked: code/run_SCZ_analysis.sbatch
Untracked: code/run_SCZ_analysis.sh
Untracked: code/run_SCZ_analysis_S.sbatch
Untracked: code/run_SCZ_analysis_S.sh
Untracked: code/run_SCZ_ctwas_rss_LDR.R
Untracked: code/run_SCZ_ctwas_rss_LDR_S.R
Untracked: code/run_T2D_analysis.sbatch
Untracked: code/run_T2D_analysis.sh
Untracked: code/run_T2D_ctwas_rss_LDR.R
Untracked: code/wflow_build.R
Untracked: code/wflow_build.sbatch
Untracked: data/.ipynb_checkpoints/
Untracked: data/BMI/
Untracked: data/PGC3_SCZ_wave3_public.v2.tsv
Untracked: data/SCZ/
Untracked: data/SCZ_2014_EUR/
Untracked: data/SCZ_2020/
Untracked: data/SCZ_S/
Untracked: data/T2D/
Untracked: data/UKBB/
Untracked: data/UKBB_SNPs_Info.text
Untracked: data/gene_OMIM.txt
Untracked: data/gene_pip_0.8.txt
Untracked: data/mashr_Heart_Atrial_Appendage.db
Untracked: data/mashr_sqtl/
Untracked: data/summary_known_genes_annotations.xlsx
Untracked: data/untitled.txt
Unstaged changes:
Modified: analysis/SCZ_Brain_Amygdala.Rmd
Modified: analysis/SCZ_Brain_Anterior_cingulate_cortex_BA24.Rmd
Modified: analysis/SCZ_Brain_Caudate_basal_ganglia.Rmd
Modified: analysis/SCZ_Brain_Cerebellar_Hemisphere.Rmd
Modified: analysis/SCZ_Brain_Cerebellum.Rmd
Modified: analysis/SCZ_Brain_Cortex.Rmd
Modified: analysis/SCZ_Brain_Frontal_Cortex_BA9.Rmd
Modified: analysis/SCZ_Brain_Hippocampus.Rmd
Modified: analysis/SCZ_Brain_Hypothalamus.Rmd
Modified: analysis/SCZ_Brain_Nucleus_accumbens_basal_ganglia.Rmd
Modified: analysis/SCZ_Brain_Putamen_basal_ganglia.Rmd
Modified: analysis/SCZ_Brain_Spinal_cord_cervical_c-1.Rmd
Modified: analysis/SCZ_Brain_Substantia_nigra.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
There are no past versions. Publish this analysis with wflow_publish()
to start tracking its development.
#number of imputed weights
nrow(qclist_all)
[1] 10552
#number of imputed weights by chromosome
table(qclist_all$chr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1030 748 613 403 500 608 511 407 386 416 633 601 216 346 369 482
17 18 19 20 21 22
610 161 797 322 120 273
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 8168
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.7741
#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
gene snp
0.0151047 0.0002559
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
gene snp
10.065 8.056
#report sample size
print(sample_size)
[1] 77096
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1] 10552 7352670
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
gene snp
0.02081 0.19657
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.08811 1.70775
genename region_tag susie_pip mu2 PVE z num_eqtl
10719 ZNF823 19_10 0.9904 30.32 0.0003895 5.560 2
13100 KB-226F1.2 22_6 0.9823 27.54 0.0003509 -3.296 2
12952 RP11-230C9.4 6_102 0.9395 21.99 0.0002680 -4.543 2
11817 AC012074.2 2_15 0.9344 22.01 0.0002668 4.623 1
472 TRAPPC3 1_22 0.9286 24.84 0.0002992 5.058 1
2969 SF3B1 2_117 0.9225 44.74 0.0005354 6.784 1
426 FAM120A 9_47 0.8408 23.38 0.0002550 -4.706 2
3999 SPECC1 17_16 0.7912 21.49 0.0002205 4.167 1
9103 DIRAS1 19_3 0.7721 20.80 0.0002083 4.285 1
2838 PDCD10 3_103 0.7656 19.76 0.0001962 -4.030 1
2898 LMAN2L 2_57 0.7652 22.97 0.0002279 -4.528 2
10112 TMEM222 1_19 0.7426 22.15 0.0002133 3.902 1
11362 UBXN2B 8_45 0.7097 20.89 0.0001923 -3.891 2
2963 KCNJ13 2_137 0.7077 37.22 0.0003417 6.658 1
10953 LIN28B-AS1 6_70 0.7052 23.55 0.0002154 -4.732 2
3590 BHLHE41 12_18 0.7035 22.76 0.0002077 3.860 1
6095 ARFGAP2 11_29 0.6638 24.36 0.0002098 4.839 1
13182 RBAKDN 7_6 0.6448 20.65 0.0001727 3.931 2
1043 PLOD1 1_9 0.6179 23.42 0.0001877 -3.849 1
2281 ERLIN1 10_64 0.6034 22.23 0.0001739 4.370 1
genename region_tag susie_pip mu2 PVE z num_eqtl
11773 HIST1H2BN 6_21 1.507e-06 953.07 1.863e-08 10.773 1
6614 MMP16 8_63 0.000e+00 502.03 0.000e+00 3.648 1
8914 MSL2 3_84 2.573e-07 436.85 1.458e-09 5.847 2
13060 RP1-86C11.7 6_21 2.831e-12 415.62 1.526e-14 9.033 1
10534 HLA-DQA1 6_26 1.521e-14 214.18 4.226e-17 3.448 1
11039 APOM 6_26 1.015e-08 199.46 2.626e-11 8.945 1
11035 ABHD16A 6_26 8.414e-09 199.15 2.174e-11 8.934 1
12066 C4A 6_26 2.844e-10 195.76 7.221e-13 8.475 2
11277 DDAH2 6_26 0.000e+00 185.37 0.000e+00 7.661 1
3720 HIST1H2BJ 6_21 0.000e+00 145.75 0.000e+00 1.674 1
2830 PCCB 3_84 0.000e+00 142.15 0.000e+00 -4.361 1
11041 BAG6 6_26 0.000e+00 130.09 0.000e+00 7.267 3
811 PPP2R3A 3_84 0.000e+00 128.74 0.000e+00 4.119 1
10416 HLA-DRB1 6_26 0.000e+00 124.02 0.000e+00 1.172 2
2147 MPP6 7_21 1.985e-04 116.21 2.992e-07 -3.302 1
11014 FKBPL 6_26 0.000e+00 115.58 0.000e+00 -3.789 1
11272 ATF6B 6_26 0.000e+00 115.58 0.000e+00 3.789 1
11710 CYP21A2 6_26 0.000e+00 110.02 0.000e+00 -6.852 2
11008 NOTCH4 6_26 0.000e+00 77.22 0.000e+00 6.098 1
11010 AGER 6_26 0.000e+00 74.57 0.000e+00 -2.627 1
genename region_tag susie_pip mu2 PVE z num_eqtl
2969 SF3B1 2_117 0.9225 44.74 0.0005354 6.784 1
10719 ZNF823 19_10 0.9904 30.32 0.0003895 5.560 2
13100 KB-226F1.2 22_6 0.9823 27.54 0.0003509 -3.296 2
2963 KCNJ13 2_137 0.7077 37.22 0.0003417 6.658 1
472 TRAPPC3 1_22 0.9286 24.84 0.0002992 5.058 1
2524 MDK 11_28 0.6021 38.29 0.0002991 -6.344 1
12952 RP11-230C9.4 6_102 0.9395 21.99 0.0002680 -4.543 2
11817 AC012074.2 2_15 0.9344 22.01 0.0002668 4.623 1
426 FAM120A 9_47 0.8408 23.38 0.0002550 -4.706 2
455 MPHOSPH9 12_75 0.4389 41.84 0.0002382 6.650 1
2898 LMAN2L 2_57 0.7652 22.97 0.0002279 -4.528 2
3999 SPECC1 17_16 0.7912 21.49 0.0002205 4.167 1
10953 LIN28B-AS1 6_70 0.7052 23.55 0.0002154 -4.732 2
10112 TMEM222 1_19 0.7426 22.15 0.0002133 3.902 1
6095 ARFGAP2 11_29 0.6638 24.36 0.0002098 4.839 1
9103 DIRAS1 19_3 0.7721 20.80 0.0002083 4.285 1
3590 BHLHE41 12_18 0.7035 22.76 0.0002077 3.860 1
5316 FURIN 15_42 0.4872 32.56 0.0002058 -5.701 1
1540 CHADL 22_17 0.4006 39.47 0.0002051 4.950 1
2838 PDCD10 3_103 0.7656 19.76 0.0001962 -4.030 1
genename region_tag susie_pip mu2 PVE z num_eqtl
11773 HIST1H2BN 6_21 1.507e-06 953.07 1.863e-08 10.773 1
13060 RP1-86C11.7 6_21 2.831e-12 415.62 1.526e-14 9.033 1
11039 APOM 6_26 1.015e-08 199.46 2.626e-11 8.945 1
11035 ABHD16A 6_26 8.414e-09 199.15 2.174e-11 8.934 1
12066 C4A 6_26 2.844e-10 195.76 7.221e-13 8.475 2
6075 CNNM2 10_66 2.553e-01 41.00 1.358e-04 -7.876 1
11277 DDAH2 6_26 0.000e+00 185.37 0.000e+00 7.661 1
12530 RP11-490G2.2 1_60 2.956e-02 50.56 1.939e-05 7.551 1
11041 BAG6 6_26 0.000e+00 130.09 0.000e+00 7.267 3
11710 CYP21A2 6_26 0.000e+00 110.02 0.000e+00 -6.852 2
2969 SF3B1 2_117 9.225e-01 44.74 5.354e-04 6.784 1
2963 KCNJ13 2_137 7.077e-01 37.22 3.417e-04 6.658 1
455 MPHOSPH9 12_75 4.389e-01 41.84 2.382e-04 6.650 1
10382 NKAPL 6_22 1.720e-02 35.66 7.954e-06 -6.495 1
11051 POU5F1 6_25 7.404e-02 40.57 3.897e-05 -6.385 2
2524 MDK 11_28 6.021e-01 38.29 2.991e-04 -6.344 1
11008 NOTCH4 6_26 0.000e+00 77.22 0.000e+00 6.098 1
8984 ATG13 11_28 1.505e-01 34.68 6.773e-05 -6.084 1
9474 HARBI1 11_28 1.505e-01 34.68 6.773e-05 6.084 1
8291 INO80E 16_24 4.178e-01 34.94 1.893e-04 5.963 1
[1] 0.006823
#number of genes for gene set enrichment
length(genes)
[1] 27
Uploading data to Enrichr... Done.
Querying GO_Biological_Process_2021... Done.
Querying GO_Cellular_Component_2021... Done.
Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"
[1] Term Overlap Adjusted.P.value Genes
<0 rows> (or 0-length row.names)
[1] "GO_Cellular_Component_2021"
[1] Term Overlap Adjusted.P.value Genes
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"
[1] Term Overlap Adjusted.P.value Genes
<0 rows> (or 0-length row.names)
Description FDR Ratio
20 Measles 0.00804 1/10
59 Snowflake vitreoretinal degeneration 0.00804 1/10
60 Cerebral Cavernous Malformations 3 0.00804 1/10
62 HEMOLYTIC UREMIC SYNDROME, ATYPICAL, SUSCEPTIBILITY TO, 2 0.00804 1/10
64 Familial cerebral cavernous malformation 0.00804 1/10
66 Nevo syndrome (disorder) 0.00804 1/10
67 LEBER CONGENITAL AMAUROSIS 16 0.00804 1/10
74 MENTAL RETARDATION, AUTOSOMAL RECESSIVE 52 0.00804 1/10
76 SPASTIC PARAPLEGIA 62, AUTOSOMAL RECESSIVE 0.00804 1/10
77 Ehlers-Danlos syndrome kyphoscoliotic type 0.00804 1/10
BgRatio
20 1/9703
59 1/9703
60 1/9703
62 1/9703
64 1/9703
66 1/9703
67 1/9703
74 1/9703
76 1/9703
77 1/9703
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL
Warning: 'timedatectl' indicates the non-existent timezone name 'n/a'
Warning: Your system is mis-configured: '/etc/localtime' is not a symlink
Warning: It is strongly recommended to set envionment variable TZ to 'America/
Chicago' (or equivalent)
#number of genes in known annotations
print(length(known_annotations))
[1] 130
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 55
#significance threshold for TWAS
print(sig_thresh)
[1] 4.576
#number of ctwas genes
length(ctwas_genes)
[1] 7
#number of TWAS genes
length(twas_genes)
[1] 72
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
genename region_tag susie_pip mu2 PVE z num_eqtl
12952 RP11-230C9.4 6_102 0.9395 21.99 0.0002680 -4.543 2
13100 KB-226F1.2 22_6 0.9823 27.54 0.0003509 -3.296 2
#sensitivity / recall
print(sensitivity)
ctwas TWAS
0.01538 0.06923
#specificity
print(specificity)
ctwas TWAS
0.9995 0.9940
#precision / PPV
print(precision)
ctwas TWAS
0.2857 0.1250
#number of genes in known annotations (with imputed expression)
print(length(known_annotations))
[1] 55
#number of bystander genes (with imputed expression)
print(length(unrelated_genes))
[1] 680
#subset results to genes in known annotations or bystanders
ctwas_gene_res_subset <- ctwas_gene_res[ctwas_gene_res$genename %in% c(known_annotations, unrelated_genes),]
#assign ctwas and TWAS genes
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]
#significance threshold for TWAS
print(sig_thresh)
[1] 4.576
#number of ctwas genes (in known annotations or bystanders)
length(ctwas_genes)
[1] 2
#number of TWAS genes (in known annotations or bystanders)
length(twas_genes)
[1] 22
#sensitivity / recall
sensitivity
ctwas TWAS
0.03636 0.16364
#specificity / (1 - False Positive Rate)
specificity
ctwas TWAS
1.0000 0.9809
#precision / PPV / (1 - False Discovery Rate)
precision
ctwas TWAS
1.0000 0.4091
pip_range <- (0:1000)/1000
sensitivity <- rep(NA, length(pip_range))
specificity <- rep(NA, length(pip_range))
for (index in 1:length(pip_range)){
pip <- pip_range[index]
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>=pip]
sensitivity[index] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
specificity[index] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
}
plot(1-specificity, sensitivity, type="l", xlim=c(0,1), ylim=c(0,1), main="", xlab="1 - Specificity", ylab="Sensitivity")
title(expression("ROC Curve for cTWAS (black) and TWAS (" * phantom("red") * ")"))
title(expression(phantom("ROC Curve for cTWAS (black) and TWAS (") * "red" * phantom(")")), col.main="red")
sig_thresh_range <- seq(from=0, to=max(abs(ctwas_gene_res_subset$z)), length.out=length(pip_range))
for (index in 1:length(sig_thresh_range)){
sig_thresh_plot <- sig_thresh_range[index]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>=sig_thresh_plot]
sensitivity[index] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
specificity[index] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
}
lines(1-specificity, sensitivity, xlim=c(0,1), ylim=c(0,1), col="red", lty=1)
abline(a=0,b=1,lty=3)
#add previously computed points from the analysis
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]
points(1-specificity_plot["ctwas"], sensitivity_plot["ctwas"], pch=21, bg="black")
points(1-specificity_plot["TWAS"], sensitivity_plot["TWAS"], pch=21, bg="red")
#table of outcomes for silver standard genes
-sort(-table(silver_standard_case))
silver_standard_case
Not Imputed Insignificant z-score Nearby SNP(s)
75 46 7
Detected (PIP > 0.8)
2
#show inconclusive genes
silver_standard_case[silver_standard_case=="Inconclusive"]
named character(0)
sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)
Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] parallel stats4 stats graphics grDevices utils datasets
[8] methods base
other attached packages:
[1] GenomicRanges_1.36.1 GenomeInfoDb_1.20.0 IRanges_2.18.1
[4] S4Vectors_0.22.1 BiocGenerics_0.30.0 biomaRt_2.40.1
[7] readxl_1.3.1 forcats_0.5.1 stringr_1.4.0
[10] dplyr_1.0.7 purrr_0.3.4 readr_2.1.1
[13] tidyr_1.1.4 tidyverse_1.3.1 tibble_3.1.6
[16] WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0
[19] cowplot_1.0.0 ggplot2_3.3.5 workflowr_1.7.0
loaded via a namespace (and not attached):
[1] ggbeeswarm_0.6.0 colorspace_2.0-2 rjson_0.2.20
[4] ellipsis_0.3.2 rprojroot_2.0.2 XVector_0.24.0
[7] fs_1.5.2 rstudioapi_0.13 farver_2.1.0
[10] ggrepel_0.9.1 bit64_4.0.5 AnnotationDbi_1.46.0
[13] fansi_1.0.2 lubridate_1.8.0 xml2_1.3.3
[16] codetools_0.2-16 doParallel_1.0.17 cachem_1.0.6
[19] knitr_1.36 jsonlite_1.7.2 apcluster_1.4.8
[22] Cairo_1.5-12.2 broom_0.7.10 dbplyr_2.1.1
[25] compiler_3.6.1 httr_1.4.2 backports_1.4.1
[28] assertthat_0.2.1 Matrix_1.2-18 fastmap_1.1.0
[31] cli_3.1.0 later_0.8.0 prettyunits_1.1.1
[34] htmltools_0.5.2 tools_3.6.1 igraph_1.2.10
[37] GenomeInfoDbData_1.2.1 gtable_0.3.0 glue_1.6.2
[40] reshape2_1.4.4 doRNG_1.8.2 Rcpp_1.0.8
[43] Biobase_2.44.0 cellranger_1.1.0 jquerylib_0.1.4
[46] vctrs_0.3.8 svglite_1.2.2 iterators_1.0.14
[49] xfun_0.29 ps_1.6.0 rvest_1.0.2
[52] lifecycle_1.0.1 rngtools_1.5.2 XML_3.99-0.3
[55] zlibbioc_1.30.0 getPass_0.2-2 scales_1.1.1
[58] vroom_1.5.7 hms_1.1.1 promises_1.0.1
[61] yaml_2.2.1 curl_4.3.2 memoise_2.0.1
[64] ggrastr_1.0.1 gdtools_0.1.9 stringi_1.7.6
[67] RSQLite_2.2.8 highr_0.9 foreach_1.5.2
[70] rlang_1.0.1 pkgconfig_2.0.3 bitops_1.0-7
[73] evaluate_0.14 lattice_0.20-38 labeling_0.4.2
[76] bit_4.0.4 processx_3.5.2 tidyselect_1.1.1
[79] plyr_1.8.6 magrittr_2.0.2 R6_2.5.1
[82] generics_0.1.1 DBI_1.1.2 pillar_1.6.4
[85] haven_2.4.3 whisker_0.3-2 withr_2.4.3
[88] RCurl_1.98-1.5 modelr_0.1.8 crayon_1.5.0
[91] utf8_1.2.2 tzdb_0.2.0 rmarkdown_2.11
[94] progress_1.2.2 grid_3.6.1 data.table_1.14.2
[97] blob_1.2.2 callr_3.7.0 git2r_0.26.1
[100] reprex_2.0.1 digest_0.6.29 httpuv_1.5.1
[103] munsell_0.5.0 beeswarm_0.2.3 vipor_0.4.5