Last updated: 2023-02-12

Checks: 5 2

Knit directory: cTWAS_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ data
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config_b38.R code/ctwas_config_b38.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 0e327ac. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .ipynb_checkpoints/
    Ignored:    analysis/figure/

Untracked files:
    Untracked:  Proposal plots.R
    Untracked:  RGS14.pdf
    Untracked:  RNF186.pdf
    Untracked:  SCZ_annotation.xlsx
    Untracked:  SLC8B1.pdf
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  analysis/LDL_Liver_GTEX_mashr.Rmd
    Untracked:  cache/
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/FUMA_output/
    Untracked:  data/GO_Terms/
    Untracked:  data/GTEx_Analysis_v8_eQTL.tar
    Untracked:  data/G_list.RData
    Untracked:  data/IBD_ME/
    Untracked:  data/LDL/
    Untracked:  data/LDL_E_S/
    Untracked:  data/LDL_M/
    Untracked:  data/LDL_S/
    Untracked:  data/LDL_multi/
    Untracked:  data/PGC3_SCZ_wave3_public.v2.tsv
    Untracked:  data/SCZ/
    Untracked:  data/SCZ_2014_EUR/
    Untracked:  data/SCZ_2018/
    Untracked:  data/SCZ_2018_S/
    Untracked:  data/SCZ_2020/
    Untracked:  data/SCZ_S/
    Untracked:  data/Supplementary Table 15 - MAGMA.xlsx
    Untracked:  data/Supplementary Table 20 - Prioritised Genes.xlsx
    Untracked:  data/UKBB/
    Untracked:  data/UKBB_SNPs_Info.text
    Untracked:  data/WhiteBlood_E/
    Untracked:  data/WhiteBlood_E_M/
    Untracked:  data/WhiteBlood_E_S_M/
    Untracked:  data/WhiteBlood_M/
    Untracked:  data/cpg_annot.RData
    Untracked:  data/eqtl/
    Untracked:  data/gencode.v26.GRCh38.genes.gtf
    Untracked:  data/gene_OMIM.txt
    Untracked:  data/gene_pip_0.8.txt
    Untracked:  data/gwas_sumstats/
    Untracked:  data/magma.genes.out
    Untracked:  data/mashr_Heart_Atrial_Appendage.db
    Untracked:  data/mashr_sqtl/
    Untracked:  data/mqtl/
    Untracked:  data/multigroup/
    Untracked:  data/notes.txt
    Untracked:  data/scz_2018.RDS
    Untracked:  data/summary_known_genes_annotations.xlsx
    Untracked:  temp_LDR/
    Untracked:  top_genes_32.txt
    Untracked:  top_genes_37.txt
    Untracked:  top_genes_43.txt
    Untracked:  top_genes_54.txt
    Untracked:  top_genes_81.txt
    Untracked:  z_snp_pos_SCZ.RData
    Untracked:  z_snp_pos_SCZ_2014_EUR.RData
    Untracked:  z_snp_pos_SCZ_2018.RData
    Untracked:  z_snp_pos_SCZ_2020.RData

Unstaged changes:
    Deleted:    analysis/Atrial_Fibrillation_Heart_Atrial_Appendage.Rmd
    Deleted:    analysis/Atrial_Fibrillation_Heart_Left_Ventricle.Rmd
    Deleted:    analysis/Autism_Brain_Amygdala.Rmd
    Deleted:    analysis/Autism_Brain_Anterior_cingulate_cortex_BA24.Rmd
    Deleted:    analysis/Autism_Brain_Caudate_basal_ganglia.Rmd
    Deleted:    analysis/Autism_Brain_Cerebellar_Hemisphere.Rmd
    Deleted:    analysis/Autism_Brain_Cerebellum.Rmd
    Deleted:    analysis/Autism_Brain_Cortex.Rmd
    Deleted:    analysis/Autism_Brain_Frontal_Cortex_BA9.Rmd
    Deleted:    analysis/Autism_Brain_Hippocampus.Rmd
    Deleted:    analysis/Autism_Brain_Hypothalamus.Rmd
    Deleted:    analysis/Autism_Brain_Nucleus_accumbens_basal_ganglia.Rmd
    Deleted:    analysis/Autism_Brain_Putamen_basal_ganglia.Rmd
    Deleted:    analysis/Autism_Brain_Spinal_cord_cervical_c-1.Rmd
    Deleted:    analysis/Autism_Brain_Substantia_nigra.Rmd
    Deleted:    analysis/BMI_Brain_Amygdala.Rmd
    Deleted:    analysis/BMI_Brain_Amygdala_S.Rmd
    Deleted:    analysis/BMI_Brain_Anterior_cingulate_cortex_BA24.Rmd
    Deleted:    analysis/BMI_Brain_Anterior_cingulate_cortex_BA24_S.Rmd
    Deleted:    analysis/BMI_Brain_Caudate_basal_ganglia.Rmd
    Deleted:    analysis/BMI_Brain_Caudate_basal_ganglia_S.Rmd
    Deleted:    analysis/BMI_Brain_Cerebellar_Hemisphere.Rmd
    Deleted:    analysis/BMI_Brain_Cerebellar_Hemisphere_S.Rmd
    Deleted:    analysis/BMI_Brain_Cerebellum.Rmd
    Deleted:    analysis/BMI_Brain_Cerebellum_S.Rmd
    Deleted:    analysis/BMI_Brain_Cortex.Rmd
    Deleted:    analysis/BMI_Brain_Cortex_S.Rmd
    Deleted:    analysis/BMI_Brain_Frontal_Cortex_BA9.Rmd
    Deleted:    analysis/BMI_Brain_Frontal_Cortex_BA9_S.Rmd
    Deleted:    analysis/BMI_Brain_Hippocampus.Rmd
    Deleted:    analysis/BMI_Brain_Hippocampus_S.Rmd
    Deleted:    analysis/BMI_Brain_Hypothalamus.Rmd
    Deleted:    analysis/BMI_Brain_Hypothalamus_S.Rmd
    Deleted:    analysis/BMI_Brain_Nucleus_accumbens_basal_ganglia.Rmd
    Deleted:    analysis/BMI_Brain_Nucleus_accumbens_basal_ganglia_S.Rmd
    Deleted:    analysis/BMI_Brain_Putamen_basal_ganglia.Rmd
    Deleted:    analysis/BMI_Brain_Putamen_basal_ganglia_S.Rmd
    Deleted:    analysis/BMI_Brain_Spinal_cord_cervical_c-1.Rmd
    Deleted:    analysis/BMI_Brain_Spinal_cord_cervical_c-1_S.Rmd
    Deleted:    analysis/BMI_Brain_Substantia_nigra.Rmd
    Deleted:    analysis/BMI_Brain_Substantia_nigra_S.Rmd
    Deleted:    analysis/BMI_S_results.Rmd
    Deleted:    analysis/Glucose_Adipose_Subcutaneous.Rmd
    Deleted:    analysis/Glucose_Adipose_Visceral_Omentum.Rmd
    Modified:   analysis/WhiteBlood_WholeBlood_E.Rmd
    Modified:   analysis/WhiteBlood_WholeBlood_E_M.Rmd
    Modified:   analysis/WhiteBlood_WholeBlood_M.Rmd
    Modified:   analysis/index.Rmd
    Modified:   code/LDL_out/LDL_Liver_GTEx_mashr.err
    Modified:   code/LDL_out/LDL_Liver_GTEx_mashr.out
    Modified:   code/RedBlood_M_out/RedBlood_WholeBlood.err
    Modified:   code/RedBlood_M_out/RedBlood_WholeBlood.out
    Modified:   code/WhiteBlood_E_out/WhiteBlood_WholeBlood.err
    Modified:   code/WhiteBlood_E_out/WhiteBlood_WholeBlood.out
    Modified:   code/WhiteBlood_M_out/WhiteBlood_WholeBlood.err
    Modified:   code/WhiteBlood_M_out/WhiteBlood_WholeBlood.out
    Deleted:    code/White_Blood_M_out/White_Blood_BreastMammary.err
    Deleted:    code/White_Blood_M_out/White_Blood_BreastMammary.out
    Deleted:    code/White_Blood_M_out/White_Blood_ColonTransverse.err
    Deleted:    code/White_Blood_M_out/White_Blood_ColonTransverse.out
    Deleted:    code/White_Blood_M_out/White_Blood_KidneyCortex.err
    Deleted:    code/White_Blood_M_out/White_Blood_KidneyCortex.out
    Deleted:    code/White_Blood_M_out/White_Blood_Lung.err
    Deleted:    code/White_Blood_M_out/White_Blood_Lung.out
    Deleted:    code/White_Blood_M_out/White_Blood_MuscleSkeletal.err
    Deleted:    code/White_Blood_M_out/White_Blood_MuscleSkeletal.out
    Deleted:    code/White_Blood_M_out/White_Blood_Ovary.err
    Deleted:    code/White_Blood_M_out/White_Blood_Ovary.out
    Deleted:    code/White_Blood_M_out/White_Blood_Prostate.err
    Deleted:    code/White_Blood_M_out/White_Blood_Prostate.out
    Deleted:    code/White_Blood_M_out/White_Blood_Testis.err
    Deleted:    code/White_Blood_M_out/White_Blood_Testis.out
    Deleted:    code/White_Blood_M_out/White_Blood_WholeBlood.err
    Deleted:    code/White_Blood_M_out/White_Blood_WholeBlood.out
    Deleted:    code/run_IBD_ctwas_rss_LDR_ME.R
    Modified:   code/run_WhiteBlood_ctwas_rss_LDR_E.R
    Modified:   code/run_WhiteBlood_ctwas_rss_LDR_M.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


Weight QC

[1] 11502
[1] 2828

  1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20 
268 199 136  92 117 181 138  88 114 115 180 165  44  93  84 156 178  33 239  77 
 21  22 
 37  94 
[1] 1

Load ctwas results

Check convergence of parameters

#estimated group prior
estimated_group_prior <- estimated_group_prior_all[,ncol(group_prior_rec)]
print(estimated_group_prior)
      SNP      gene 
9.388e-05 4.225e-02 
#estimated group prior variance
estimated_group_prior_var <- estimated_group_prior_var_all[,ncol(group_prior_var_rec)]
print(estimated_group_prior_var)
  SNP  gene 
28.61 10.17 
#estimated enrichment
estimated_enrichment <- estimated_enrichment_all[ncol(group_prior_var_rec)]
print(estimated_enrichment)
[1] 450.1
#report sample size
print(sample_size)
[1] 343621
#report group size
print(group_size)
    SNP    gene 
8696600    2828 
#estimated group PVE
estimated_group_pve <- estimated_group_pve_all[,ncol(group_prior_rec)]
print(estimated_group_pve)
     SNP     gene 
0.067986 0.003536 
#total PVE
sum(estimated_group_pve)
[1] 0.07152
#attributable PVE
estimated_group_pve/sum(estimated_group_pve)
    SNP    gene 
0.95056 0.04944 

Genes with highest PIPs

#distribution of PIPs
hist(ctwas_gene_res$susie_pip, xlim=c(0,1), main="Distribution of Gene PIPs")

#genes with PIP>0.8 or 20 highest PIPs
head(ctwas_gene_res[order(-ctwas_gene_res$susie_pip),report_cols], max(sum(ctwas_gene_res$susie_pip>0.8), 20))
           genename region_tag susie_pip   mu2       PVE      z num_eqtl
11257        CYP2A6      19_28    0.9902 29.03 8.367e-05  5.407        1
10708        NYNRIN       14_3    0.9880 51.39 1.478e-04  7.679        1
1597           PLTP      20_28    0.9873 36.21 1.040e-04 -5.732        1
6774           PKN3       9_66    0.9844 44.38 1.271e-04 -6.644        1
8817         VPS37D       7_47    0.9783 21.11 6.010e-05 -4.576        1
6615          TMED4       7_32    0.9727 50.56 1.431e-04  9.538        1
NA.313         <NA>      11_12    0.9703 21.32 6.020e-05  4.388        1
9054        SPTY2D1      11_13    0.9591 29.09 8.119e-05 -5.587        1
7809   CTB-50L17.10       19_5    0.9515 19.74 5.467e-05  4.277        1
NA.311         <NA>      6_103    0.9231 40.69 1.093e-04 -6.094        1
7350           BRI3       7_60    0.9214 25.56 6.853e-05 -5.079        1
1320        CWF19L1      10_64    0.9152 31.15 8.297e-05  5.707        1
9156         TMEM64       8_64    0.9101 30.24 8.008e-05  3.169        1
6855       ALDH16A1      19_34    0.9088 25.72 6.802e-05 -4.053        1
3714       SLC2A4RG      20_38    0.8938 28.39 7.386e-05 -5.563        1
NA.310         <NA>       5_78    0.8915 17.27 4.480e-05 -3.848        1
328          SLC4A7       3_20    0.8875 20.36 5.257e-05 -4.181        1
7992       TMEM150A       2_54    0.8744 16.99 4.324e-05  3.718        1
4317           RSG1       1_11    0.8741 18.54 4.716e-05 -4.179        1
2454        ST3GAL4      11_77    0.8733 68.45 1.740e-04 11.734        1
3889         STYXL1       7_48    0.8705 30.45 7.714e-05 -5.633        1
7679          PATL1      11_34    0.8527 17.09 4.240e-05  3.820        1
138            IL32       16_3    0.8427 16.67 4.087e-05  3.544        1
3330         SEC16B       1_87    0.8412 17.87 4.376e-05 -3.767        1
4669          SCYL2      12_59    0.8407 16.92 4.140e-05 -3.564        1
3501          CALD1       7_82    0.8227 17.90 4.286e-05 -3.737        1
9476          CMSS1       3_63    0.8003 18.56 4.323e-05 -3.839        1

Genes with largest effect sizes

#plot PIP vs effect size
plot(ctwas_gene_res$susie_pip, ctwas_gene_res$mu2, xlab="PIP", ylab="mu^2", main="Gene PIPs vs Effect Size")

#genes with 20 largest effect sizes
head(ctwas_gene_res[order(-ctwas_gene_res$mu2),report_cols],20)
       genename region_tag susie_pip      mu2       PVE        z num_eqtl
5797    SLC22A3      6_104 0.000e+00 37695.93 0.000e+00  -6.2246        1
NA.306     <NA>       1_67 2.906e-01  1393.15 1.178e-03 -41.7935        1
4433      PSRC1       1_67 2.974e-01  1346.04 1.165e-03 -41.0871        1
10549   HLA-DMA       6_27 1.102e-04   330.51 1.060e-07  -2.3643        1
2077    ATP13A1      19_15 1.043e-01   280.30 8.506e-05 -18.3960        1
8026      PCSK9       1_34 2.691e-03   193.48 1.515e-06  16.0785        1
5988      FADS1      11_34 4.865e-01   136.38 1.931e-04  12.6748        1
8700        ABO       9_70 1.169e-01   136.29 4.638e-05  12.0997        1
10926     FADS3      11_34 6.932e-02   103.77 2.093e-05  11.0739        1
9251     ZNF329      19_39 7.982e-01    98.82 2.296e-04  10.4360        1
11078   HLA-DOB       6_27 2.389e-03    92.32 6.419e-07  -0.9047        1
9910       RHCE       1_18 5.740e-02    84.90 1.418e-05  10.0287        1
4047    NECTIN2      19_31 0.000e+00    84.36 0.000e+00   5.8246        1
10475    TBKBP1      17_27 1.451e-01    79.57 3.360e-05  -9.5850        1
11016     APOC2      19_31 0.000e+00    78.61 0.000e+00 -12.2066        1
366      PHLPP2      16_38 4.015e-07    73.29 8.564e-11  -8.7039        1
6183       POC5       5_44 2.798e-02    73.07 5.950e-06  10.8623        1
5375     GEMIN7      19_31 0.000e+00    71.85 0.000e+00  12.2666        1
11372     APOC4      19_31 0.000e+00    69.64 0.000e+00  -1.0396        1
6090    CSNK1G3       5_75 5.342e-01    68.85 1.070e-04   8.8808        1

Genes with highest PVE

#genes with 20 highest pve
head(ctwas_gene_res[order(-ctwas_gene_res$PVE),report_cols],20)
       genename region_tag susie_pip     mu2       PVE       z num_eqtl
NA.306     <NA>       1_67    0.2906 1393.15 1.178e-03 -41.793        1
4433      PSRC1       1_67    0.2974 1346.04 1.165e-03 -41.087        1
9251     ZNF329      19_39    0.7982   98.82 2.296e-04  10.436        1
5988      FADS1      11_34    0.4865  136.38 1.931e-04  12.675        1
2454    ST3GAL4      11_77    0.8733   68.45 1.740e-04  11.734        1
10708    NYNRIN       14_3    0.9880   51.39 1.478e-04   7.679        1
6615      TMED4       7_32    0.9727   50.56 1.431e-04   9.538        1
6774       PKN3       9_66    0.9844   44.38 1.271e-04  -6.644        1
NA.311     <NA>      6_103    0.9231   40.69 1.093e-04  -6.094        1
6090    CSNK1G3       5_75    0.5342   68.85 1.070e-04   8.881        1
1597       PLTP      20_28    0.9873   36.21 1.040e-04  -5.732        1
10552      TAP2       6_27    0.5966   58.39 1.014e-04   7.663        1
2077    ATP13A1      19_15    0.1043  280.30 8.506e-05 -18.396        1
11257    CYP2A6      19_28    0.9902   29.03 8.367e-05   5.407        1
1320    CWF19L1      10_64    0.9152   31.15 8.297e-05   5.707        1
2092        SP4       7_19    0.6662   42.56 8.252e-05  -7.429        1
9054    SPTY2D1      11_13    0.9591   29.09 8.119e-05  -5.587        1
9156     TMEM64       8_64    0.9101   30.24 8.008e-05   3.169        1
3889     STYXL1       7_48    0.8705   30.45 7.714e-05  -5.633        1
3714   SLC2A4RG      20_38    0.8938   28.39 7.386e-05  -5.563        1

Genes with largest z scores

#genes with 20 largest z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
       genename region_tag susie_pip     mu2       PVE       z num_eqtl
NA.306     <NA>       1_67 2.906e-01 1393.15 1.178e-03 -41.793        1
4433      PSRC1       1_67 2.974e-01 1346.04 1.165e-03 -41.087        1
2077    ATP13A1      19_15 1.043e-01  280.30 8.506e-05 -18.396        1
8026      PCSK9       1_34 2.691e-03  193.48 1.515e-06  16.079        1
5988      FADS1      11_34 4.865e-01  136.38 1.931e-04  12.675        1
5375     GEMIN7      19_31 0.000e+00   71.85 0.000e+00  12.267        1
11016     APOC2      19_31 0.000e+00   78.61 0.000e+00 -12.207        1
8700        ABO       9_70 1.169e-01  136.29 4.638e-05  12.100        1
2454    ST3GAL4      11_77 8.733e-01   68.45 1.740e-04  11.734        1
10926     FADS3      11_34 6.932e-02  103.77 2.093e-05  11.074        1
6183       POC5       5_44 2.798e-02   73.07 5.950e-06  10.862        1
9251     ZNF329      19_39 7.982e-01   98.82 2.296e-04  10.436        1
9910       RHCE       1_18 5.740e-02   84.90 1.418e-05  10.029        1
10475    TBKBP1      17_27 1.451e-01   79.57 3.360e-05  -9.585        1
6615      TMED4       7_32 9.727e-01   50.56 1.431e-04   9.538        1
6090    CSNK1G3       5_75 5.342e-01   68.85 1.070e-04   8.881        1
366      PHLPP2      16_38 4.015e-07   73.29 8.564e-11  -8.704        1
10996  HLA-DQB2       6_26 5.260e-02   42.63 6.524e-06  -7.859        1
9071   HLA-DQB1       6_26 5.244e-02   42.15 6.432e-06   7.804        1
10708    NYNRIN       14_3 9.880e-01   51.39 1.478e-04   7.679        1

Comparing z scores and PIPs

#set nominal signifiance threshold for z scores
alpha <- 0.05

#bonferroni adjusted threshold for z scores
sig_thresh <- qnorm(1-(alpha/nrow(ctwas_gene_res)/2), lower=T)

#Q-Q plot for z scores
obs_z <- ctwas_gene_res$z[order(ctwas_gene_res$z)]
exp_z <- qnorm((1:nrow(ctwas_gene_res))/nrow(ctwas_gene_res))

plot(exp_z, obs_z, xlab="Expected z", ylab="Observed z", main="Gene z score Q-Q plot")
abline(a=0,b=1)

#plot z score vs PIP
plot(abs(ctwas_gene_res$z), ctwas_gene_res$susie_pip, xlab="abs(z)", ylab="PIP")
abline(v=sig_thresh, col="red", lty=2)

#number of significant z scores
sum(abs(ctwas_gene_res$z) > sig_thresh)
[1] 92
#proportion of significant z scores
mean(abs(ctwas_gene_res$z) > sig_thresh)
[1] 0.03253
#genes with most significant z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
       genename region_tag susie_pip     mu2       PVE       z num_eqtl
NA.306     <NA>       1_67 2.906e-01 1393.15 1.178e-03 -41.793        1
4433      PSRC1       1_67 2.974e-01 1346.04 1.165e-03 -41.087        1
2077    ATP13A1      19_15 1.043e-01  280.30 8.506e-05 -18.396        1
8026      PCSK9       1_34 2.691e-03  193.48 1.515e-06  16.079        1
5988      FADS1      11_34 4.865e-01  136.38 1.931e-04  12.675        1
5375     GEMIN7      19_31 0.000e+00   71.85 0.000e+00  12.267        1
11016     APOC2      19_31 0.000e+00   78.61 0.000e+00 -12.207        1
8700        ABO       9_70 1.169e-01  136.29 4.638e-05  12.100        1
2454    ST3GAL4      11_77 8.733e-01   68.45 1.740e-04  11.734        1
10926     FADS3      11_34 6.932e-02  103.77 2.093e-05  11.074        1
6183       POC5       5_44 2.798e-02   73.07 5.950e-06  10.862        1
9251     ZNF329      19_39 7.982e-01   98.82 2.296e-04  10.436        1
9910       RHCE       1_18 5.740e-02   84.90 1.418e-05  10.029        1
10475    TBKBP1      17_27 1.451e-01   79.57 3.360e-05  -9.585        1
6615      TMED4       7_32 9.727e-01   50.56 1.431e-04   9.538        1
6090    CSNK1G3       5_75 5.342e-01   68.85 1.070e-04   8.881        1
366      PHLPP2      16_38 4.015e-07   73.29 8.564e-11  -8.704        1
10996  HLA-DQB2       6_26 5.260e-02   42.63 6.524e-06  -7.859        1
9071   HLA-DQB1       6_26 5.244e-02   42.15 6.432e-06   7.804        1
10708    NYNRIN       14_3 9.880e-01   51.39 1.478e-04   7.679        1

SNPs with highest PIPs

#snps with PIP>0.8 or 20 highest PIPs
head(ctwas_snp_res[order(-ctwas_snp_res$susie_pip),report_cols_snps],
max(sum(ctwas_snp_res$susie_pip>0.8), 20))
                 id region_tag susie_pip       mu2       PVE        z
14605     rs2495502       1_34    1.0000    401.68 1.169e-03   6.2922
71888     rs1042034       2_13    1.0000    261.73 7.617e-04  16.5730
71894      rs934197       2_13    1.0000    413.10 1.202e-03  33.0609
73624      rs780093       2_16    1.0000    198.48 5.776e-04 -14.1426
326578  rs115740542       6_20    1.0000    173.22 5.041e-04 -12.5323
370564   rs60425481      6_104    1.0000 254263.08 7.400e-01  -7.1125
759176  rs113408695      17_39    1.0000    163.07 4.746e-04  12.7688
792455   rs73013176       19_9    1.0000    238.12 6.930e-04 -16.2327
792493  rs137992968       19_9    1.0000    234.44 6.823e-04 -10.7526
795290    rs3794991      19_15    1.0000    501.74 1.460e-03 -21.4921
802596   rs62117204      19_31    1.0000    828.22 2.410e-03 -44.6722
802614  rs111794050      19_31    1.0000    814.02 2.369e-03 -33.5996
802647     rs814573      19_31    1.0000   2381.88 6.932e-03  55.5379
802649  rs113345881      19_31    1.0000    830.63 2.417e-03 -34.3186
802652   rs12721109      19_31    1.0000   1434.60 4.175e-03 -46.3258
897616   rs67138090       6_27    1.0000   2561.39 7.454e-03   4.4111
813183   rs34507316      20_13    1.0000     97.35 2.833e-04  -6.8147
327311     rs454182       6_22    1.0000    151.60 4.412e-04   4.7791
759202    rs8070232      17_39    1.0000    197.65 5.752e-04  -8.0915
71839    rs11679386       2_12    1.0000    168.71 4.910e-04  11.9094
71974     rs1848922       2_13    1.0000    242.15 7.047e-04  25.4123
71897      rs548145       2_13    1.0000    713.12 2.075e-03  33.0860
505608  rs115478735       9_70    1.0000    335.71 9.770e-04  19.0118
497391    rs2437818       9_53    1.0000     81.53 2.373e-04   6.3340
1045619   rs1800961      20_28    1.0000     78.53 2.285e-04  -8.8970
733872   rs12149380      16_38    1.0000    134.20 3.906e-04  -4.1646
758260    rs1801689      17_38    1.0000     87.71 2.553e-04   9.3964
802310   rs73036721      19_30    1.0000     64.83 1.887e-04  -7.7879
428656    rs7012814       8_12    1.0000    100.62 2.928e-04  10.9061
444842    rs4738679       8_45    1.0000    117.23 3.412e-04 -11.6999
278105    rs1499279       5_30    1.0000     68.69 1.999e-04  -8.3746
79689    rs72800939       2_28    1.0000     61.03 1.776e-04  -7.8457
14616    rs10888896       1_34    1.0000    150.41 4.377e-04  11.8938
7420     rs79598313       1_18    1.0000     50.68 1.475e-04   7.0246
443447  rs140753685       8_42    1.0000     61.14 1.779e-04   7.7992
802355   rs62115478      19_30    1.0000    202.52 5.894e-04 -14.3262
55203     rs2807848      1_112    1.0000     61.02 1.776e-04  -7.8828
14575    rs11580527       1_34    1.0000     92.62 2.695e-04 -11.1672
463800   rs13252684       8_83    1.0000    266.94 7.768e-04  11.9644
1033018  rs73045960      19_32    1.0000    159.95 4.655e-04 -12.8179
795321  rs113619686      19_15    1.0000     74.34 2.164e-04   0.5939
326557   rs72834643       6_20    1.0000     53.42 1.555e-04  -6.0487
463797    rs6470359       8_83    1.0000    317.18 9.230e-04   9.6469
813182    rs6075251      20_13    1.0000     69.96 2.036e-04  -2.3298
352856    rs9496567       6_67    1.0000     42.29 1.231e-04  -6.3402
322849   rs11376017       6_13    0.9999     71.92 2.093e-04  -8.5079
702570    rs2070895      15_26    0.9998     63.99 1.862e-04   7.7347
792519    rs4804149      19_10    0.9998     50.25 1.462e-04   6.5194
792572     rs322144      19_10    0.9998     70.10 2.040e-04   3.9466
370652  rs374071816      6_104    0.9998  45729.13 1.330e-01  16.2541
733915   rs57186116      16_38    0.9996     75.01 2.182e-04   7.7146
543351   rs17875416      10_71    0.9995     41.39 1.204e-04  -6.2663
79553   rs139029940       2_27    0.9994     41.05 1.194e-04   6.8150
284557    rs7701166       5_44    0.9993     39.76 1.156e-04  -2.4848
497364    rs2297400       9_53    0.9992     43.99 1.279e-04   6.6057
608882    rs7397189      12_36    0.9992     37.31 1.085e-04  -5.7710
794930    rs2302209      19_14    0.9988     46.79 1.360e-04   6.6360
433174    rs1495743       8_20    0.9986     44.41 1.291e-04  -6.5160
912208     rs662138      6_103    0.9982    124.29 3.611e-04  11.2979
739367    rs2255451      16_48    0.9982     41.34 1.201e-04  -6.3628
463788    rs2980875       8_83    0.9976    596.29 1.731e-03 -22.1022
912140   rs12208357      6_103    0.9974    204.82 5.945e-04  12.2823
14623      rs471705       1_34    0.9973    225.29 6.539e-04  16.2630
792476  rs147985405       19_9    0.9971   2728.60 7.918e-03 -48.9352
585738   rs75542613      11_70    0.9970     38.50 1.117e-04  -6.5344
585733    rs3135506      11_70    0.9966    160.77 4.663e-04  12.3730
383559   rs56130071       7_19    0.9961    107.27 3.110e-04  10.9789
818136   rs76981217      20_24    0.9960     36.88 1.069e-04   7.6925
624874     rs653178      12_67    0.9954    109.75 3.179e-04  11.0501
444810   rs56386732       8_45    0.9947     36.26 1.050e-04  -7.0123
897506    rs9275698       6_27    0.9937   2533.19 7.325e-03  -0.6590
663674    rs3934835      13_62    0.9935     62.74 1.814e-04   7.9439
803515     rs838145      19_33    0.9921    107.70 3.110e-04 -11.8738
141832     rs709149        3_9    0.9918     41.36 1.194e-04  -6.7820
327748    rs3130253       6_23    0.9901     31.47 9.067e-05   5.6415
328533   rs28780090       6_24    0.9888     54.57 1.570e-04   6.8714
818087    rs6029132      20_24    0.9874     42.32 1.216e-04  -6.7625
613248  rs148481241      12_44    0.9856     29.40 8.432e-05   5.0955
148478    rs9834932       3_24    0.9856     72.21 2.071e-04  -8.4816
284498   rs10062361       5_44    0.9849    228.73 6.556e-04  20.3206
733648    rs4396539      16_37    0.9790     29.34 8.360e-05  -5.2329
594365   rs11048034       12_9    0.9746     39.91 1.132e-04   6.1337
79566    rs13430143       2_27    0.9720    100.23 2.835e-04  -3.3445
405771    rs3197597       7_61    0.9711     30.67 8.668e-05  -5.0452
247912  rs114756490      4_100    0.9698     27.78 7.840e-05   4.9889
479716    rs1556516       9_16    0.9670     80.15 2.256e-04  -8.9921
225183    rs1458038       4_54    0.9661     56.62 1.592e-04  -7.4179
628254   rs11057830      12_76    0.9656     27.84 7.822e-05   4.9296
79569     rs4076834       2_27    0.9635    481.67 1.351e-03 -20.1086
326396   rs75080831       6_19    0.9621     62.84 1.759e-04  -7.9067
30636     rs1730862       1_66    0.9608     31.11 8.700e-05  -5.2846
1014613  rs78173576       17_6    0.9599     32.48 9.075e-05  -5.1389
818140   rs73124945      20_24    0.9594     33.14 9.252e-05  -7.7754
390928  rs141379002       7_33    0.9583     27.65 7.712e-05   4.8970
762335    rs4969183      17_44    0.9572     53.00 1.476e-04   7.1693
569362    rs6591179      11_36    0.9569     27.87 7.760e-05   4.8933
327719   rs28986304       6_23    0.9523     44.83 1.242e-04   7.3825
825857   rs62219001       21_2    0.9512     28.05 7.764e-05  -4.9484
471852    rs7024888        9_3    0.9506     27.66 7.653e-05  -5.0558
912244    rs2297374      6_103    0.9401    135.79 3.715e-04 -12.1550
1015731   rs2908806       17_7    0.9348     40.38 1.098e-04  -6.0264
733913    rs9652628      16_38    0.9345    137.95 3.751e-04  11.9505
622967    rs1196760      12_63    0.9316     27.52 7.461e-05  -4.8667
637141    rs1012130      13_10    0.9294     48.67 1.316e-04  -2.7810
355592   rs12199109       6_73    0.9151     27.03 7.200e-05   4.8570
858234   rs16828576       1_16    0.9132     31.35 8.332e-05  -4.7429
510558   rs10905277       10_8    0.9096     29.84 7.899e-05   5.1258
749224  rs117859452      17_17    0.9096     26.40 6.987e-05  -3.8517
543062   rs12244851      10_70    0.9080     40.83 1.079e-04  -4.8831
749133    rs3032928      17_17    0.9063     36.73 9.688e-05   6.1119
729756     rs821840      16_30    0.9063    179.77 4.741e-04 -13.4753
14606     rs1887552       1_34    0.9017    445.83 1.170e-03  -9.8686
792560     rs322125      19_10    0.9010    120.04 3.147e-04  -7.4704
71891    rs78610189       2_13    0.9004     63.88 1.674e-04  -8.3855
198595   rs36205397        4_4    0.9002     43.16 1.131e-04   6.1594
123929    rs7569317      2_120    0.8994     53.30 1.395e-04   7.9007
328556   rs62407548       6_24    0.8949     71.31 1.857e-04   8.2573
497384    rs2777788       9_53    0.8939     67.50 1.756e-04  -5.7370
792486    rs2738447       19_9    0.8869    406.10 1.048e-03  17.7674
821639   rs10641149      20_32    0.8834     29.28 7.526e-05   5.0758
487702   rs11144506       9_35    0.8711     28.85 7.315e-05   5.0427
582002  rs201912654      11_59    0.8697     41.15 1.042e-04  -6.3056
803490   rs62130338      19_33    0.8683     44.66 1.129e-04   8.4694
813163   rs78348000      20_13    0.8676     32.23 8.136e-05   5.2206
284521    rs3843482       5_44    0.8605    444.53 1.113e-03  25.0344
808828   rs74273659       20_5    0.8586     26.73 6.680e-05   4.6468
196808    rs5855544      3_120    0.8514     26.74 6.625e-05  -4.5937
753847    rs4793601      17_28    0.8492     32.24 7.968e-05  -6.2095
361795    rs9321207       6_86    0.8485     32.48 8.020e-05   5.4016
99599   rs138192199       2_69    0.8469     26.63 6.564e-05   4.6708
759187    rs9303012      17_39    0.8457    197.13 4.852e-04   2.2591
816881   rs11167269      20_21    0.8435     62.56 1.536e-04  -7.7950
1035312   rs3764613      19_32    0.8405     33.83 8.276e-05  -4.8164
71691     rs6531234       2_12    0.8380     44.18 1.078e-04  -7.1708
818105    rs6102034      20_24    0.8372    104.13 2.537e-04 -11.1900
40333     rs1795240       1_84    0.8350     27.53 6.689e-05  -4.8462
637133    rs1799955      13_10    0.8345     82.21 1.997e-04  -6.6936
428625  rs117037226       8_11    0.8340     26.40 6.408e-05   4.1922
200820    rs2002574       4_10    0.8312     27.18 6.574e-05  -4.5583
702569  rs139823028      15_26    0.8299     26.72 6.452e-05   3.9898
733853   rs12708919      16_38    0.8283    159.38 3.842e-04  11.3028
1014343  rs55714927       17_6    0.8246     96.78 2.322e-04  -9.6448
833098    rs2835302      21_16    0.8244     27.72 6.649e-05  -4.6537
792529   rs58495388      19_10    0.8213     36.41 8.702e-05   5.5313
834235  rs149577713      21_19    0.8156     33.88 8.041e-05   3.3168
818281   rs11086801      20_25    0.8123    117.70 2.782e-04  10.9752
862519   rs12740374       1_67    0.8102   1568.76 3.699e-03 -41.7935
428667   rs13265179       8_12    0.8086     38.95 9.165e-05  -7.4149
537852   rs10882161      10_59    0.8056     31.26 7.330e-05  -5.4756
499962    rs2762469       9_56    0.8039     26.81 6.273e-05  -4.5317

SNPs with largest effect sizes

#plot PIP vs effect size
#plot(ctwas_snp_res$susie_pip, ctwas_snp_res$mu2, xlab="PIP", ylab="mu^2", main="SNP PIPs vs Effect Size")

#SNPs with 50 largest effect sizes
head(ctwas_snp_res[order(-ctwas_snp_res$mu2),report_cols_snps],50)
                id region_tag susie_pip    mu2       PVE      z
370560   rs3106169      6_104 7.729e-01 254324 5.720e-01 11.139
370561   rs3127598      6_104 4.346e-01 254322 3.217e-01 11.135
370569   rs3106167      6_104 4.047e-01 254321 2.996e-01 11.136
370564  rs60425481      6_104 1.000e+00 254263 7.400e-01 -7.113
370553  rs11755965      6_104 2.269e-05 254243 1.679e-05 11.140
370544  rs12194962      6_104 2.998e-15 253708 2.213e-15 11.106
370562   rs3127597      6_104 4.552e-15 253541 3.359e-15 11.145
370523   rs3119311      6_104 0.000e+00 184266 0.000e+00  8.031
370517   rs3127579      6_104 0.000e+00 134045 0.000e+00  7.568
370511  rs10945658      6_104 0.000e+00 117098 0.000e+00  8.309
370510   rs3119308      6_104 0.000e+00 116814 0.000e+00  8.274
370506   rs3103352      6_104 0.000e+00 116769 0.000e+00  8.522
370502   rs3101821      6_104 0.000e+00 116358 0.000e+00  8.528
370508  rs12205178      6_104 0.000e+00 116144 0.000e+00  8.297
370500 rs148015788      6_104 0.000e+00 114639 0.000e+00  8.351
370611   rs3124784      6_104 0.000e+00  95684 0.000e+00  9.680
370612   rs3127596      6_104 0.000e+00  86712 0.000e+00  9.556
370605   rs3127599      6_104 0.000e+00  86360 0.000e+00  9.259
370575   rs2481030      6_104 0.000e+00  83598 0.000e+00  4.811
370540   rs2504949      6_104 0.000e+00  68992 0.000e+00  2.937
370593    rs388170      6_104 0.000e+00  63823 0.000e+00  3.833
370515    rs316013      6_104 0.000e+00  61217 0.000e+00 -3.002
370516    rs316012      6_104 0.000e+00  60476 0.000e+00 -3.074
370596   rs9355288      6_104 0.000e+00  58810 0.000e+00  6.319
370504    rs610206      6_104 0.000e+00  55899 0.000e+00 -2.944
370505    rs595374      6_104 0.000e+00  55793 0.000e+00 -2.921
370512    rs315995      6_104 0.000e+00  54412 0.000e+00 -3.207
370509    rs543435      6_104 0.000e+00  54203 0.000e+00 -3.250
370558    rs452867      6_104 0.000e+00  50537 0.000e+00 -7.124
370567    rs367334      6_104 0.000e+00  50505 0.000e+00 -7.106
370556    rs600584      6_104 0.000e+00  50497 0.000e+00 -7.113
370555    rs589931      6_104 0.000e+00  50497 0.000e+00 -7.116
370557    rs434953      6_104 0.000e+00  50496 0.000e+00 -7.111
370563    rs380498      6_104 0.000e+00  50495 0.000e+00 -7.115
370531   rs3119312      6_104 0.000e+00  48834 0.000e+00  3.771
370652 rs374071816      6_104 9.998e-01  45729 1.330e-01 16.254
370590   rs2872317      6_104 0.000e+00  44360 0.000e+00  6.746
370587   rs2313453      6_104 0.000e+00  44333 0.000e+00  6.718
370578 rs146184004      6_104 0.000e+00  42572 0.000e+00  6.534
370657   rs4252185      6_104 2.295e-04  42044 2.808e-05 15.878
370581    rs624319      6_104 0.000e+00  41736 0.000e+00 -6.291
370580    rs637614      6_104 0.000e+00  41666 0.000e+00 -6.362
370582    rs486339      6_104 0.000e+00  41385 0.000e+00 -6.311
370527    rs316036      6_104 0.000e+00  40557 0.000e+00 -7.009
370579    rs555754      6_104 0.000e+00  40242 0.000e+00 -6.593
370658  rs12212146      6_104 0.000e+00  32750 0.000e+00 -2.410
370525    rs582280      6_104 0.000e+00  31626 0.000e+00  2.635
370524    rs497039      6_104 0.000e+00  31618 0.000e+00  2.634
370711   rs1247539      6_104 0.000e+00  25553 0.000e+00 -4.294
370608   rs9346818      6_104 0.000e+00  25017 0.000e+00  7.950

SNPs with highest PVE

#SNPs with 50 highest pve
head(ctwas_snp_res[order(-ctwas_snp_res$PVE),report_cols_snps],50)
                 id region_tag susie_pip      mu2       PVE       z
370564   rs60425481      6_104    1.0000 254263.1 0.7399521  -7.113
370560    rs3106169      6_104    0.7729 254323.7 0.5720466  11.139
370561    rs3127598      6_104    0.4346 254322.2 0.3216625  11.135
370569    rs3106167      6_104    0.4047 254321.2 0.2995505  11.136
370652  rs374071816      6_104    0.9998  45729.1 0.1330496  16.254
792476  rs147985405       19_9    0.9971   2728.6 0.0079179 -48.935
897616   rs67138090       6_27    1.0000   2561.4 0.0074541   4.411
897506    rs9275698       6_27    0.9937   2533.2 0.0073252  -0.659
802647     rs814573      19_31    1.0000   2381.9 0.0069317  55.538
802652   rs12721109      19_31    1.0000   1434.6 0.0041749 -46.326
862519   rs12740374       1_67    0.8102   1568.8 0.0036989 -41.793
802649  rs113345881      19_31    1.0000    830.6 0.0024173 -34.319
802596   rs62117204      19_31    1.0000    828.2 0.0024103 -44.672
802614  rs111794050      19_31    1.0000    814.0 0.0023689 -33.600
71897      rs548145       2_13    1.0000    713.1 0.0020753  33.086
463788    rs2980875       8_83    0.9976    596.3 0.0017312 -22.102
795290    rs3794991      19_15    1.0000    501.7 0.0014602 -21.492
79569     rs4076834       2_27    0.9635    481.7 0.0013506 -20.109
71894      rs934197       2_13    1.0000    413.1 0.0012022  33.061
14606     rs1887552       1_34    0.9017    445.8 0.0011699  -9.869
14605     rs2495502       1_34    1.0000    401.7 0.0011690   6.292
284521    rs3843482       5_44    0.8605    444.5 0.0011132  25.034
792486    rs2738447       19_9    0.8869    406.1 0.0010482  17.767
505608  rs115478735       9_70    1.0000    335.7 0.0009770  19.012
792466    rs8102273       19_9    0.5878    542.6 0.0009283 -14.168
463797    rs6470359       8_83    1.0000    317.2 0.0009230   9.647
463800   rs13252684       8_83    1.0000    266.9 0.0007768  11.964
71888     rs1042034       2_13    1.0000    261.7 0.0007617  16.573
71974     rs1848922       2_13    1.0000    242.2 0.0007047  25.412
792455   rs73013176       19_9    1.0000    238.1 0.0006930 -16.233
792493  rs137992968       19_9    1.0000    234.4 0.0006823 -10.753
284498   rs10062361       5_44    0.9849    228.7 0.0006556  20.321
14623      rs471705       1_34    0.9973    225.3 0.0006539  16.263
792463   rs68010235       19_9    0.4122    534.5 0.0006411 -13.919
912140   rs12208357      6_103    0.9974    204.8 0.0005945  12.282
802355   rs62115478      19_30    1.0000    202.5 0.0005894 -14.326
73624      rs780093       2_16    1.0000    198.5 0.0005776 -14.143
759202    rs8070232      17_39    1.0000    197.7 0.0005752  -8.091
326578  rs115740542       6_20    1.0000    173.2 0.0005041 -12.532
71839    rs11679386       2_12    1.0000    168.7 0.0004910  11.909
759187    rs9303012      17_39    0.8457    197.1 0.0004852   2.259
759176  rs113408695      17_39    1.0000    163.1 0.0004746  12.769
729756     rs821840      16_30    0.9063    179.8 0.0004741 -13.475
585733    rs3135506      11_70    0.9966    160.8 0.0004663  12.373
1033018  rs73045960      19_32    1.0000    160.0 0.0004655 -12.818
862515    rs7528419       1_67    0.1009   1566.0 0.0004598 -41.737
327311     rs454182       6_22    1.0000    151.6 0.0004412   4.779
14616    rs10888896       1_34    1.0000    150.4 0.0004377  11.894
309099   rs12657266       5_92    0.7753    177.9 0.0004013  13.895
733872   rs12149380      16_38    1.0000    134.2 0.0003906  -4.165

SNPs with largest z scores

#histogram of (abs) SNP z scores
hist(abs(ctwas_snp_res$z))

#SNPs with 50 largest z scores
head(ctwas_snp_res[order(-abs(ctwas_snp_res$z)),report_cols_snps],50)
                id region_tag susie_pip    mu2       PVE      z
802647    rs814573      19_31 1.000e+00 2381.9 6.932e-03  55.54
792476 rs147985405       19_9 9.971e-01 2728.6 7.918e-03 -48.94
792471  rs73015020       19_9 2.023e-03 2717.0 1.600e-05 -48.80
792469 rs138175288       19_9 6.112e-04 2714.7 4.829e-06 -48.78
792470 rs138294113       19_9 1.421e-04 2711.6 1.121e-06 -48.75
792472  rs77140532       19_9 7.429e-05 2710.5 5.860e-07 -48.74
792473 rs112552009       19_9 1.073e-05 2706.3 8.455e-08 -48.71
792474  rs10412048       19_9 1.558e-05 2707.4 1.227e-07 -48.70
792468  rs55997232       19_9 1.110e-09 2688.4 8.686e-12 -48.52
802652  rs12721109      19_31 1.000e+00 1434.6 4.175e-03 -46.33
802596  rs62117204      19_31 1.000e+00  828.2 2.410e-03 -44.67
802583   rs1551891      19_31 0.000e+00  480.8 0.000e+00 -42.27
862519  rs12740374       1_67 8.102e-01 1568.8 3.699e-03 -41.79
862515   rs7528419       1_67 1.009e-01 1566.0 4.598e-04 -41.74
862526    rs646776       1_67 7.733e-02 1564.4 3.521e-04  41.73
862525    rs629301       1_67 1.311e-02 1560.5 5.953e-05  41.69
862537    rs583104       1_67 4.988e-04 1515.7 2.200e-06  41.09
862540   rs4970836       1_67 4.860e-04 1512.6 2.139e-06  41.05
862542   rs1277930       1_67 5.034e-04 1507.7 2.209e-06  40.98
862543    rs599839       1_67 5.295e-04 1506.9 2.322e-06  40.96
792477  rs17248769       19_9 0.000e+00 1982.9 0.000e+00 -40.84
792478   rs2228671       19_9 0.000e+00 1971.1 0.000e+00 -40.70
862523   rs3832016       1_67 2.529e-04 1462.2 1.076e-06  40.40
862520    rs660240       1_67 2.481e-04 1454.4 1.050e-06  40.29
862538    rs602633       1_67 3.071e-04 1431.8 1.280e-06  39.96
792467   rs9305020       19_9 0.000e+00 1725.0 0.000e+00 -34.84
802643    rs405509      19_31 0.000e+00  967.3 0.000e+00 -34.64
862506   rs4970834       1_67 6.964e-04 1084.7 2.198e-06 -34.62
802649 rs113345881      19_31 1.000e+00  830.6 2.417e-03 -34.32
802567  rs62120566      19_31 0.000e+00 1399.3 0.000e+00 -33.74
802614 rs111794050      19_31 1.000e+00  814.0 2.369e-03 -33.60
71897     rs548145       2_13 1.000e+00  713.1 2.075e-03  33.09
802620   rs4802238      19_31 0.000e+00  981.8 0.000e+00  33.08
71894     rs934197       2_13 1.000e+00  413.1 1.202e-03  33.06
802561 rs188099946      19_31 0.000e+00 1340.9 0.000e+00 -33.04
802631   rs2972559      19_31 0.000e+00 1347.9 0.000e+00  32.29
802555 rs201314191      19_31 0.000e+00 1242.0 0.000e+00 -32.07
862527   rs3902354       1_67 2.775e-04  922.5 7.451e-07  32.00
862516  rs11102967       1_67 2.691e-04  918.6 7.194e-07  31.94
862541   rs4970837       1_67 3.461e-04  915.7 9.223e-07  31.86
802622  rs56394238      19_31 0.000e+00  984.2 0.000e+00  31.55
802599   rs2965169      19_31 0.000e+00  330.2 0.000e+00 -31.38
802623   rs3021439      19_31 0.000e+00  867.7 0.000e+00  31.05
862511    rs611917       1_67 2.277e-04  864.7 5.731e-07 -30.98
71924   rs12997242       2_13 2.482e-12  375.0 2.709e-15  30.82
802630  rs12162222      19_31 0.000e+00 1150.4 0.000e+00  30.50
71898     rs478588       2_13 2.536e-11  659.6 4.867e-14  30.49
802560  rs62119327      19_31 0.000e+00 1091.3 0.000e+00 -30.42
71899   rs56350433       2_13 6.074e-13  349.8 6.183e-16  30.23
71904   rs56079819       2_13 6.068e-13  349.0 6.164e-16  30.19

sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] cowplot_1.1.1   ggplot2_3.4.0   workflowr_1.7.0

loaded via a namespace (and not attached):
 [1] tidyselect_1.2.0  xfun_0.35         bslib_0.4.1       generics_0.1.3   
 [5] colorspace_2.0-3  vctrs_0.5.1       htmltools_0.5.4   yaml_2.3.6       
 [9] utf8_1.2.2        blob_1.2.3        rlang_1.0.6       jquerylib_0.1.4  
[13] later_1.3.0       pillar_1.8.1      withr_2.5.0       glue_1.6.2       
[17] DBI_1.1.3         bit64_4.0.5       lifecycle_1.0.3   stringr_1.5.0    
[21] munsell_0.5.0     gtable_0.3.1      evaluate_0.19     memoise_2.0.1    
[25] labeling_0.4.2    knitr_1.41        callr_3.7.3       fastmap_1.1.0    
[29] httpuv_1.6.7      ps_1.7.2          fansi_1.0.3       highr_0.9        
[33] Rcpp_1.0.9        promises_1.2.0.1  scales_1.2.1      cachem_1.0.6     
[37] jsonlite_1.8.4    farver_2.1.0      fs_1.5.2          bit_4.0.5        
[41] digest_0.6.31     stringi_1.7.8     processx_3.8.0    dplyr_1.0.10     
[45] getPass_0.2-2     rprojroot_2.0.3   grid_4.1.0        cli_3.4.1        
[49] tools_4.1.0       magrittr_2.0.3    sass_0.4.4        tibble_3.1.8     
[53] RSQLite_2.2.19    whisker_0.4.1     pkgconfig_2.0.3   data.table_1.14.6
[57] assertthat_0.2.1  rmarkdown_2.19    httr_1.4.4        rstudioapi_0.14  
[61] R6_2.5.1          git2r_0.30.1      compiler_4.1.0