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Abstract

Decoding the regulatory behavior of DNA sequences and the functional e�ects of noncoding variants
is a preeminent challenge in understanding the mechanisms of gene regulation. This is also important
for the genetics of common diseases, as most disease-associated variants are located in noncoding
regions of the genome. Recently, Convolutional Neural Networks (CNNs) based methods have been
developed to predict genome-wide chromatin pro�les in various cellular contexts. However, these
tools and resources were often trained in cell lines or bulk tissues that are not necessarily disease-
related. This is particularly an issue for neuropsychiatric disorders, where the most relevant cell and
tissue types are missing in the training data used by current tools.



Introduction

Next-generation sequencing(NGS) technologies have given rise to the development of many
sequencing assays such as ATAC-seq[1], DNase-seq[2], ChIPseq, RNA-seq, and FIAR-seq that measure
the epigenomic landscapes across many cellular contexts, including histone marks, TF binding and
chromatin accessibility. These epigenomic annotations aid the characterization of noncoding genomic
variants and show promises in assessing disease-associated variants and understanding the
underlying transcription machinery. There has been a joint e�ort to survey the noncoding part of the
human genome by the community, and numerous noncoding genomic sites have been statistically
identi�ed for association with complex traits. Leveraging these resources, researchers have developed
machine learning models to learn features of DNA sequences that predict chromatin pro�les such as
protein binding sites, chromatin accessibility, histone marks and methylation of DNA sequences. Once
a sequence based model is trained to predict a certain epigenomic feature, a researcher can use it to
predict the likely epigenomic e�ect of a DNA variant.



Results

1. Enrichment of ASoC Variants

To validate our predicion model, we �rst performed enrichment analysis of allele-speci�c open-
chromatin (ASoC) variants. Genetic variants prioritized by our prediction model are expected to have
large functional e�ects. We hypothesize that our predictions are enriched for genetic variants with
some known functions. ASoC variants have been established to be functional in brain, impacting gene
expresison, histone modi�cation and DNA methylation[3]. We obtained ASoC variants in neural
progenitor cells (NPC) and glutamatergic (iN-Glut) neurons from a neuron ATAC-Seq study[3]. We then
acquired all single nucleotide variants in open chromatin regions of NPC and iN-Glut and prioritized
them by our NPC and iN-Glut Brain-ResNet scores. The top 10,000 predicted genetic variants show 4
fold enrichment of ASoC variants in NPC and iN-Glut. To show the strength of our model, we also
prioritized genetic variants within open chromatin regions by Functional signi�cance (Funsig) score
and CADD score[4,5]. Funsig is a measure of the sign�cance of magnitude of predicted chromatin
e�ect and evolutionary conservation, and CADD score is a measure of the deleteriousness of genetic
variants. As shown in Fig1, our Brain-ResNet scoring signi�cantly outperforms Funsig and CADD
scoring. This gaining may arise from two apsects. First, our model uses functional genomic data from
matched cell types, which could more accurately reveal the chromatin status. Second, our model uses
ResNet architecture and is based on transfer learning, which could more precisely learn regulatory
codes from DNA sequences. To further address the importance of matched cell types, we used Brain-
ResNet scores from the other 30 cell types to prioritize genetic variants in NPC and iN-Glut. As shown
in Fig2, top predictions prioritized by matched cell types generally have higher enrichment of ASoC
variants.

2. Sign Consistentcy

Functional genetic variants either increase or decrease intensity of a certein activity in the genome. To
test if our model can precisely predict the e�ect size and the direction of e�ect, we applied our
prediction model to NPC and iN-Glut ASoC variants and compared the observed allelic imbalance and
the predicted di�erence in functional e�ects between reference and alternative alleles. As shown in
Fig3, Our prediction model tracks the observed allelic imbalance ratio with a correlation of 0.44 and
0.40. Notably, we found 70% variants show consistent sign in observed allelic imbalace and estimated
e�ect, which demonstrates that the prediction model accurately captures the direction of e�ect.

3. Evolutionary Constraint

Evolutionary constraint has shown to be useful in identifying functionally important regions[6].
Leveraging this strategy, we calculated GERP score for top predicted variants and randomly sampled
variants in 31 cell types. GERP score measures the number of substitutions “rejected” by evolutionary
constraint and higehr GERP score indicates greater magnitude of evolutionary constraint[7]. As shown
in Fig4, for most cell types, our prediction model successfully prioritized genetic variants that are
under higher evolutionary constraint and are more likely to have actual biological functions.

4. Purifying Selection

Because DNA variations are more likely to be deleterious than bene�cial, negative selection are
required to remove damaing mutations and maintain the stability of biology system [8]. This is
especially true for functionally important variants, whose change may disrupt essential biological
functions. To investigate if our Brain-ResNet score could indicate functional e�ects, we obtained
minor allele frequency from gnomAD database for all variants within peak regions of 31 chromatin
pro�les and plotted them against their predicted functional e�ects. As shown in Fig5, there is a clear
negtive correlation between minor allele frequency and Brain-ResNet score. Genetic variants with



larger predicted functional e�ects tend to have lower minor allele frequency, which indicates the
acting of negtive selection. This evidence suggests that our Brain-ResNet score is a good predictor of
functional importance.

Figures

Figure 1:  Validation of MetaChrom predicted functional variants. (A) Distribution of GERP scores between
MetaChrom predicted functional variants and random variants in fetal brain cell types. (B) Minor allele frequency by
MetaChrom score for variants within open chromatin region in 4 cell types. (C) Enrichment of ASC variants for predicted
functional variants identi�ed by MetaChrom, Funsig and CADD score in Glut and NPC cells. (D) Scatter plot comparing
the observed allelic imbalace and MetaCHrom predicted e�ect on chromatin accessibility of ASC variants.



Figure 2:  Heatmap. Heatmap showing functional e�ects of credible set SNPs in 31 cell types.

Figure 3:  Tracks. Scatter plot showing pvalue, pip and functional e�ects of the candidate SNP.



1. Enrichment of ASC Variants

All single nucleotide variants (SNVs) within functional regions (open chromatin or H3K27ac) in each
cell type are retrieved from 1000 Genomes Project. We calculate MetaChrom score, Funsig score and
CADD score for all SNVs. Funsig score is obtained from the DeepSEA Server and CADD score is
obtained from annovar. We de�ne the top 10,000 variants ranked by MetaChrom score, Funsig score
and CADD score in descending order as MetaChrom, Funsig and CADD predicted functional variants,
respectively. ASC variants in NPC and Glut cells are obtained from a neuron ATAC-seq paper. In the
neuron ATAC-seq study, iPSCs of 20 individuals are �rst di�erentiated into neural progenitor cells
(NPC) and gutamatergic (iN-Glut) neurons. Then, ATAC-seq is performed, and 5,611 and 3,547 ASoC
SNPs are identi�ed in NPC and iN-Glut cells by allelic imbalance test, respectively. We count the
number of ASC variants in predicted functional variants and control variants, and the Enrichment of
ASC variants is calculated by �sher exact test.

2. Sign Consistentcy

For ASC variants, we de�ne the observed allelic imbalance as log(ref reads/alt reads) and the
predicted e�ect on chromatin accessibility as log(ref pred/alt pred). Correlation between observed
allelic imbalance and predicted e�ect on chromatin accessibility is calcualted by Spearman’s rank
correlation coe�cient.

3. Evolutionary Constraint

GERP scores of MetaChrom predicted functional variants and control variants are obtained from
Annovar. P value is calculated by the Wilcoxon Rank-Sum Test.

4. Purifying Selection

Minor allele frequency of MetaChrom predicted functional variants and control variants is obtained
from gnomAD. The MetaChrom score ranges from 0 to 1. We splitted variants into 5 bins according to
the MetaChrom score, namely 0-0.05, 0.05-0.1, 0.1-0.15, 0.15-0.2 and 0.2-1.0. In each bin, the mean of
minor allele frequency and standard error of the mean are calcualated.
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